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a b s t r a c t

It has been known for over a hundred years that all physically realizable motions of an ideal
axisymmetric cylinder, rolling without slip on its flat circular bottom atop a flat horizontal
surface, are periodic in the cylinder’s angular rates and quasi-periodic overall. Here, we
show that slight asymmetries in the cylinder, say the addition of an off-center point-mass,
result in non-periodic motions with exponentially increasing sensitivity to initial condi-
tions, making the dynamics chaotic.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most common table-top experiments that one performs unwittingly, say when sitting at a table after dinner, is
casual play with objects found on the table. Most of us have some experience fiddling with empty soda cans, beer bottles, or
other cylindrical containers on the table, including spinning them, letting them rock on their circular bottoms, or rolling
them on their sides. However, all these motions come to an end quite quickly due to various frictional effects. As a conse-
quence, one does not really have direct experience of the motions of cylinders in the absence of dissipation – motions, that
once begun, last for ever. For over a hundred years (e.g., Chaplygin, 1948; Appell, 1900; Korteweg, 1900), it has been known
that all the motions of ideal disks and cylinders rolling without slip on the edges of their flat circular bottoms are generally
quasi-periodic, with the angular rates being exactly periodic. See O’Reilly (1996), Borisov and Mamaev (2002), for instance,
for reviews of the principal results and the relevant literature.

Here, we show that breaking the axisymmetry of the cylinder with an off-center point-mass makes the angular rates non-
periodic. Further, it appears that these non-periodic motions depend sensitively on initial conditions, with the sensitivity
increasing exponentially in time, suggesting that the simplest table-top experiment of rocking asymmetric cylinders, albeit
in the absence of dissipation, exhibits deterministic chaos.
. All rights reserved.
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2. Model

We consider an axisymmetric cylinder with mass m, with a flat circular bottom of radius R, with the center of mass at a
height H from the bottom when the cylinder is upright. The position of the center of mass G of the cylinder is, in general, at
ðxG; yG; zGÞ with respect to an inertial frame with coordinate axes ex–ey–ez. The orientation of the cylinder is characterized by
Euler angles, w, /, and h, as shown in Fig. 1, defining the following three rotations in sequence. The reference orientation of
the cylinder is vertical in the inertial frame. The first rotation is by an angle w about the ez axis, giving the coordinate frame
ex1–ey1–ez1. The second rotation is by an angle / about the negative ey1 axis, giving the coordinate frame ex2–ey2–ez2. The last
rotation is by an angle h about the symmetry axis ez2, giving the body-fixed frame ex3–ey3–ez3. The moment of inertia of the
cylinder about the symmetry axis ez3 is C and the moment of inertia about any axis perpendicular to ez3 and passing through
the center of mass is A. The acceleration due to gravity is g. The notation introduced so far is identical to that used in Srin-
ivasan and Ruina (2008). The axisymmetry of the cylinder is broken by a point-mass mo attached rigidly to the cylinder at
point E, at the height of the center of mass, such that rGE ¼ Rex3, as shown in Fig. 1c.

Using angular momentum balance about the center of mass G and linear momentum balance to obtain the contact forces,
we obtain three second order ODEs that determine the evolution of the orientation w, /, and h. See Srinivasan and Ruina
(2008) for a derivation of these equations in the absence of the additional point-mass mo. With mo, there are a few extra
terms in the equations. We used MATLAB’s symbolic manipulation capabilities to obtain these equations. The equations
are given in the appendix. These equations are integrated using an adaptive stiff integrator (MATLAB’s ode15s). The quality
of the integration and indeed, the correctness of the equations are buttressed by the observation that the total energy was a
constant in the numerical integration, up to an error of only about 10�8, the integration tolerance.

3. Results and discussion

In the following, we use a cylinder with m ¼ 1, R ¼ 5:1� 10�2, H ¼ 6:9� 10�2, A ¼ 5:13� 10�3, C ¼ 8� 10�3, and g ¼ 9:8,
all in consistent units. The phenomena described here are robust to large changes in these parameter values.

Fig. 2 shows the results of integrating these equations for an axisymmetric cylinder (mo ¼ 0). The angular rates _/; _w; _h are
all periodic, as is the angle /. The angles w and h are monotonic, in this case (not shown, but see Srinivasan and Ruina, 2008).
On the other hand, Fig. 3 shows the results of integrating these equations for an asymmetric cylinder (mo ¼ 0:3). We see that
the motion appears non-periodic and seems to have no simple pattern (although this does not rule out quasi-periodicity).

A key difference between the symmetric and asymmetric cases shown in Figs. 2 and 3 is how a small error in initial con-
ditions grows with time. For both cases, we first compute the Jacobian JðtÞ of the state of the system
wðtÞ ¼ ½wðtÞ _wðtÞ /ðtÞ _/ðtÞ hðtÞ _hðtÞ�T with respect to the initial state wð0Þ ¼ ½wð0Þ _wð0Þ /ð0Þ _/ð0Þ hð0Þ _hð0Þ�T . This Jacobian
was computed by integrating the appropriate adjoint equations (obtained by symbolic differentiation of the equations of
motion with respect to the states), rather than using finite differences, making the Jacobian estimate as accurate as the state
variables themselves. Using adjoint equations also avoids saturation effects that arise when finite differences are applied to
bounded state variables (Kantz and Schreiber, 1997).

The singular values of the Jacobian quantify the size of the ellipsoid that a sufficiently small ball of initial conditions gets
stretched into. The logarithm of the maximum singular value of the Jacobian lðtÞ is plotted in Fig. 4, showing that l increases
linearly with t for the axisymmetric case and increases exponentially with t for the asymmetric case. Note that the maximal
Lyapunov exponent k is given by limt!1 log lðtÞ=t, and appears to be zero for the axisymmetric case and about 0.3 for the
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Fig. 1. Definition of the Euler angles and coordinate axes used to define the orientation of the container. Adapted from Srinivasan and Ruina (2008).
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asymmetric case (extrapolating the fits). This suggests that the dynamics of the asymmetric cylinder are chaotic, with expo-
nential sensitivity to initial conditions. A linear-with-t increase in the sensitivity to initial conditions is not considered chaos.
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Fig. 2. Motion of an axisymmetric cylinder, with mo ¼ 0. Initial condition wð0Þ ¼ 0; _w ¼ 0:3;/ð0Þ ¼ p=8; _/ð0Þ ¼ �0:8; hð0Þ ¼ p; _hð0Þ ¼ 0. The state variables
/ and _/ are periodic. The angular rates _w and _h are also periodic, but the angles w and h need not be periodic, but can be monotonic increasing or decreasing
(not shown). The x–y motion of the center of mass G is quasi-periodic in general, in that the trajectory may never close on itself.
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Fig. 3. Motion of an asymmetric cylinder, with mo ¼ 0:3. Initial condition wð0Þ ¼ 0; _w ¼ 0:3;/ð0Þ ¼ p=8; _/ð0Þ ¼ �0:8; hð0Þ ¼ p; _hð0Þ ¼ 0. The x–y motion of
the point G (center of mass of the axisymmetric cylinder, without the off-center mass) shows no simple pattern and / superficially appears to be non-
periodic.
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Fig. 4. Logarithm of the maximum singular value lðtÞ of the Jacobian JðtÞ is plotted as a function of time t, for (a) the axisymmetric case, and (b) the
asymmetric case. In panel (a), the lower envelope of logl is well-approximated by log (1 + 46t), indicating that lðtÞ scales linearly with t. In panel (b), we
see that log l scales linearly with t; that is, l scales exponentially with t.
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Fig. 5. Logarithm of the maximum singular value lðtÞ of the reduced non-square Jacobian JBðtÞ is plotted as a function of time t, for (a) the axisymmetric
case, and (b) the asymmetric case. In panel (a), the lower envelope of logl is well-approximated by log (1 + 46t), indicating that lðtÞ scales linearly with t. In
panel (b), we see that log lðtÞ scales linearly with t; that is, l scales exponentially with t.
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For the axisymmetric cylinder, the linear increase in sensitivity of the state to initial conditions is due to the fact that the
period of the periodic motion changes (generically) with a small change in initial condition.

The large spikes in lðtÞ are related to the singularity in the equations of motion when / � 0, when the contact point has a
tendency to move extremely rapidly, accompanied by rapid and almost instantaneous changes in the angles w and h. See
Srinivasan and Ruina (2008) for a discussion of this singularity and its physical implications.

Exponential separation of trajectories is interesting, but is dubbed chaos only when the state variables themselves remain
bounded, or at least do not grow to infinity exponentially in time. For our cylinder, conservation of energy implies that _/ and
the linear velocity of any material point on the cylinder is bounded. If the motions are such that the cylinder always remains
over ground, then the angle / is also bounded. Bounded linear velocities imply that the position of any material point on the
cylinder can go to infinity at most linearly in time t. But the same cannot be argued of the other variables. In particular, the
angular rates _w and _h can potentially grow very large close to the singularity / ¼ 0 (again, see Srinivasan and Ruina, 2008).
Therefore, we repeated the calculation of lðtÞ with a non-square block JB of the full Jacobian J, measuring the sensitivity of
the necessarily bounded outputs ½/ðtÞ _/ðtÞ�T to the full initial state wð0Þ ¼ ½wð0Þ _wð0Þ /ð0Þ _/ð0Þ hð0Þ _hð0Þ�T . The plot of log lðtÞ
for this reduced Jacobian is shown in Fig. 5, indicating that the sensitivity of the bounded variables / and _/ also grow, respec-
tively, linearly and exponentially for the axisymmetric and asymmetric cases.

Not all initial conditions result in a chaotic trajectory for the asymmetric cylinder. Fig. 6 shows the results of a simulation
for an asymmetric cylinder with mo ¼ 0:05. The plot of / shows that the motion is apparently non-periodic, but we find by
plotting loglðtÞ that the sensitivity to initial conditions only grows linearly with time t.

So far in this paper, we only considered motions in which the cylinder stays relatively close to upright for all time; for
instance, / does not grow beyond p=2, resulting in a toppled cylinder. Such toppling was avoided by choosing the initial con-
dition with sufficiently low total energy E, and small tilt /. It can be shown that the sufficient conditions for avoiding top-
pling (for generic initial conditions) are the satisfaction of E < E� and / < /�, where /� ¼ tan�1ðpR=HÞ and

E� ¼ mg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ p2R2

q
with p ¼ m=ðmþmoÞ, using the convention that the potential energy is zero when the center of mass

coincides with the ground. In our simulations, violating these conditions always led to the cylinder toppling, with / reaching
p=2. Because the equations of motion do not include a condition that detects the collision of the cylinder’s side with the
ground, the cylinder continues to move beneath the ground. In limited numerical experiments, we found that these motions
always had sensitive dependence on initial conditions when the cylinder was asymmetric.

There are likely many-parameter families of these chaotic trajectories. In particular, because energy is conserved, a gen-
eric perturbation of the initial condition results in a trajectory with different energy, and therefore cannot ever converge to
the unperturbed trajectory.
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Fig. 6. Results for an asymmetric cylinder with mo ¼ 0:05, starting from initial conditions wð0Þ ¼ 0; _wð0Þ ¼ 0:6;/ð0Þ ¼ p=8; _/ð0Þ ¼ 0:1; hð0Þ ¼ p, and
_hð0Þ ¼ 0. Logarithm of the maximum singular value lðtÞ of the full Jacobian JðtÞ is plotted as a function of time t and is well-approximated by logð1þ 46tÞ,
indicating that lðtÞ scales linearly with t.
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The system considered here is non-Hamiltonian, being conservative but nonholonomic (Neimark and Fufaev, 1967; Ruina,
1998). While there has been a long tradition of Hamiltonian chaos in the dynamical systems literature (e.g., Guckenheimer
and Holmes, 1983; Wiggins, 1990), analogous results and methods for conservative nonholonomic systems appear hard to
find. Perhaps one might conjecture that many other simple conservative nonholonomic mechanical systems, say an idealized
bicycle (e.g., Meijaard et al., 2007) will also exhibit chaos when the mass distribution is asymmetric. Preliminary results sug-
gest that an asymmetric cylinder on a frictionless table also has chaotic trajectories (this is a Hamiltonian system). Chaotic
motions for similar Hamiltonian systems such as the asymmetric top have been noted previously (Holmes and Marsden,
1983; Barrientos et al., 1995; van der Heijden and Thomson, 2002; Borisov et al., 2008).

If only one had some way of making cylinders rock for a long-enough duration on a table, perhaps Poincaré would not
have had to look to the heavens for inspiration leading to his discovery of deterministic chaos.
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Appendix A. Equations of motion for a cylinder rolling without slip

The equations of motion for the cylinder rolling without slip reduce to the form Q i1
€wþ Qi2

€/þ Q i3
€h ¼ Si, with i ¼ 1;2;3, in

which
Q11 ¼ A sin /� ðmþmoÞHR cos /þmH2 sin /þmoðR2 þ H2Þ sin /

�moR2 sin / cos2 h�moHR cos / cos h;

Q12 ¼ moR2 sin hð1þ cos hÞ;
Q13 ¼ �ðmþmo þmo cos hÞHR; Q21 ¼ �moR sin h R cos h sin /þ H cos /þ R sin /ð Þ
Q22 ¼ �A� ðmþmoÞðH2 þ R2Þ �moR2 cos2 h� 2moR2 cos h; Q23 ¼ �moHR sin h

Q31 ¼ C cos /þmR2 cos /�mRH sin /þ 2moR2 cos h cos /

�moRH cos h sin /þ 2moR2 cos /�moRH sin /

Q32 ¼ moHR sin h; Q 33 ¼ C þ 2moR2 cos hþmR2 þ 2moR2 ð1Þ
S1 ¼ �2moR2 _h _w sin h sin / cos hþ 2moR2 _h _/ sin2 h�moR2 _w _h sin / sin h

�moR2 _w2 sin / cos / sin h cos h�moR2 _w2 sin h sin / cos /�moRH _w2 sin h cos2 /

þmoRH _/2 sin h� 2mH2 _w _/ cos /� 2A _w _/ cos /þ C _/ _w cos /

�mogR sin h cos /þ C _/ _h� 2moH2 _w _/ cos /� 2mHR _w _/ sin /

� 2moHR _/ _w sin / cos h� 2moHR _w _/ sin /�moRH _h2 sin h� 2moRH _h _w sin h cos / ð2Þ
S2 ¼ �moR _w2Hð1þ cos hÞ þ C _w2 sin / cos /þmR2 _h _w sin /þmgðR cos /� H sin /Þ

þmoR2 _w2 cos2 h sin / cos /þmoR2 _w2 sin / cos /�mogH sin /�mRH _w2

þmoHR _h _w cos /þ C _w _h sin /þ 2mHR _w2 cos2 /þmoRH _h2 cos h

�moH2 _w2 cos / sin /þmHR _w _h cos /þmogR cos /þmogR cos h cos /� A _w2 cos / sin /

þ 2moHR _w2 cos2 /þ 2moR2 _w2 cos h sin / cos /þ 2moRH _w2 cos h cos2 /

� 2moR2 _h _/ cos h sin hþ 3moR2 _w _h cos h sin /þ 2moRH _h _w cos h cos /�mH2 _w2 cos / sin /

� 2moR2 _h _/ sin hþ 2moR2 _h _w cos2 h sin /þmR2 _w2 sin / cos /þmoR2 _w _h sin / ð3Þ
S3 ¼ C _/ _w sin /þ 2moR2 _/ _w cos2 h sin /þ 4moR2 _w _/ cos h sin /þ 2moRH _w _/ cos h cos /

þmoR2 _w2 cos h sin h�moR2 _/2 sin h cos hþmoR2 _h _w sin h cos /�moR2 _w2 sin h cos2 / cos h

�moR2 _w2 sin h cos2 /þmoRH _w2 sin h cos / sin /þ 2mR2 _w _/ sin /þ 2moR2 _w _/ sin /

þ 2mRH _/ _w cos /þ 2moHR _w _/ cos /þmogR sin h sin /�moR2 _/2 sin h

þmoR2 _h2 sin hþmoR2 _w2 sin h ð4Þ
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