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Walking, running, and resting under time,
distance, and average speed constraints:
optimality of walk – run – rest mixtures
Leroy L. Long III and Manoj Srinivasan

Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA

On a treadmill, humans switch from walking to running beyond a character-
istic transition speed. Here, we study human choice between walking and
running in a more ecological (non-treadmill) setting. We asked subjects to
travel a given distance overground in a given allowed time duration.
During this task, the subjects carried, and could look at, a stopwatch that
counted down to zero. As expected, if the total time available were large,
humans walk the whole distance. If the time available were small, humans
mostly run. For an intermediate total time, humans often use a mixture of
walking at a slow speed and running at a higher speed. With analytical
and computational optimization, we show that using a walk–run mixture
at intermediate speeds and a walk–rest mixture at the lowest average
speeds is predicted by metabolic energy minimization, even with costs for
transients—a consequence of non-convex energy curves. Thus, sometimes,
steady locomotion may not be energy optimal, and not preferred, even in
the absence of fatigue. Assuming similar non-convex energy curves, we con-
jecture that similar walk–run mixtures may be energetically beneficial to
children following a parent and animals on long leashes. Humans and
other animals might also benefit energetically from alternating between
moving forward and standing still on a slow and sufficiently long treadmill.

1. Introduction
Imagine you wish to go from your house to the bus stop and have very little time to
do so. You would likely run the whole distance. If you had a lot of time, you would
likely walk the whole distance. If there was an intermediate amount of time, perhaps
you would walk for a while and run for a while. While it is not immediately obvious
that using a walk–run mixture is advantageous here, it seems consistent with
common experience. In this article, we make this anecdotal experience precise by
performing human subject experiments. Most significantly, we then interpret the
experimental observations using metabolic energy minimization, without appeal-
ing to fatigue or poor time-estimation as mechanisms. We review and extend
various mathematical results related to metabolic energy minimization and loco-
motor choice, deriving, for the first time, predictions for travelling finite distances
and for travelling on treadmills of finite lengths, in the presence of costs for the tran-
sients, using analytical arguments and numerical optimization. In these models, the
key mathematical criterion for obtaining walk–run (and walk–rest) mixtures is
non-convexity of the energy cost curves. Assuming similar energy curves, we con-
jecture that similar walk–run–rest mixture strategies may be energetically
beneficial in superficially diverse situations: children walking with parents, animals
on long leashes or long slow treadmills, non-elite marathon runners, etc.

2. An overground gait transition experiment
2.1. Background
Humans have two qualitatively distinct ‘gaits’, walking and running. Some tread-
mill gait transition experiments have shown that a person walking on a slow
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treadmill switches to running when the treadmill speed is
slowly increased [1–3]. When the speed is decreased, the
person switches from running to walking. Historically, most
such gait transition experiments have been performed on a
treadmill. Because an ideal treadmill (with perfect speed regu-
lation) is an inertial frame, treadmill locomotion has the
potential to be mechanically identical to overground loco-
motion [4]. However, treadmill locomotion is different from
overground locomotion in two key respects. First, a treadmill
with a short length limits voluntary speed fluctuations by
the subject. No such strict speed constraint exists in real life.
Second, a typical treadmill provides no visual flow, the feeling
of objects moving past one’s eye (but see [5]). Thus, in part to
make these experiments more ecological, we introduce a
simple non-treadmill overground gait transition experiment.

2.2. Experimental protocol
In the ‘basic protocol’ of our experiment, the subjects had to go
from a starting point S to an endpoint E, separated by a dis-
tance Drequired, in a given time duration Tallowed. The subjects
carried a stopwatch that counted down to zero from the
total time duration Tallowed, so they could see, when necessary,
the time remaining. The subjects had to reach the endpoint
exactly when the stopwatch ran out, rather than arrive early
or late. The subjects received no further instructions.

By constraining the total distance and the total time, we are
prescribing an average speed constraint Vavg ¼ Drequired /Tallowed,
without constraining the speed at any moment. Each subject
had 15 trials, with different Tallowed resulting in prescribed
average speeds Vavg from 1 to 3.8 m s21. All subjects were
video-taped and instrumented for stride frequency. Some
subjects were instrumented with a global positioning system
(GPS) device for speed measurements. Some subjects
performed indoor trials, and others, outdoors.

Variants of this ‘basic protocol’ were performed for small
subject numbers, using longer and different distances, allow-
ing some trial repetition, and allowing arriving early, to
check if the results change substantially with protocol details.
See §7 at the end of this article and electronic supplementary
material, §S5 for more details.

2.3. Experimental results: walking and running fractions
The subjects were able to travel the distance on time, with the
mean and standard deviations of late arrival just over a
second. If the subjects approached the destination too early,
they slowed down to arrive on time. As expected, for low
prescribed average speed Vavg, the subjects walked the entire
distance. For high Vavg, the subjects ran almost the entire dis-
tance. For intermediate Vavg, a majority of the subjects used a
mixture of walking and running (a walk–run mixture).

Figure 1a shows the fraction of running as a function of the
prescribed average speed Vavg, for all the subjects involved in
the basic protocol. A single data point (red dot) in figure 1a is
the fraction of time spent running by one subject in one trial,
obtained from the video by counting the seconds spent run-
ning; also shown are the median running fraction as a
function of average speed and a (pink) band containing 50
per cent of the data points. Here, running is defined as any
gait with a flight phase, in which the hip goes down and
then up when one leg is in contact with the ground, as if the
body bounces on a springy leg [6]. In walking, the hip
vaults over on the leg more like an inverted pendulum and
at least one foot always contacts the ground [7].

Unlike on a treadmill, there is no sharp gait transition
speed here. Instead, there is a ‘transition region’ between
average speeds of 2 and 3 m s21 (roughly), in which a
majority of the subjects use a walk–run mixture, transition-
ing from walking most of the time to running most of the
time. The average speed with equal amounts of walking
and running (running fraction ¼ 0.5) is about 2.2 m s21 in
figure 1a, which is close to, but slightly higher than the tread-
mill gait transition speeds in the literature [1,3]. At the highest
average speeds, the running fraction is not quite 100 per cent,
but this might be because the subjects walked one or two
steps before running the rest of the way; longer Drequired

may find higher running fractions.
The indoor and outdoor trials (figure 1b), while yielding

qualitatively similar trends appear to be slightly different;
outdoor data’s median is close to the indoor data’s 25th per-
centile. These differences could be due to small differences in
protocol (having to turn around indoors), and increased
visual flow indoors due to nearby walls, resulting in higher
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Figure 1. (a) All subjects with the basic protocol (n¼ 28 subjects, indoor and outdoor, Drequired ¼ 122 m). The time fraction of running is shown: the red dots are
the raw data (each dot is a trial, all data points shown), the solid black line is the population median, and the pink band denotes 50% of the data centred around
the median (25th – 75th percentile). Pure walking dominates low prescribed speeds and pure running dominates high prescribed speeds, and most subjects use a
walk – run mixture for intermediate speeds. (b) The data in the previous panel, decomposed into indoor and outdoor data. Median fractions are blue and pink solid
lines, surrounded by the respective 50% bands in corresponding lighter shades. (c) Variants of the basic protocol overlaid on the 50% band from the first panel:
experiments in which subjects had three trials per prescribed average speed for five different prescribed average speeds (red triangles), in which the trials had
different random distances ranging between 70 and 250 m and different time allowed (blue circles), in which the subject travelled twice the distance, 244 m
(black squares), and in which the subjects were allowed to arrive earlier than Tallowed (magenta triangles).
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perceived speed, shifting the actual gait transition region to
lower speeds [5,8]. The data from the protocol variants,
taken as a whole, are not qualitatively different from the
basic protocol (figure 1c); 75 per cent of the protocol variants’
data points fell within the centred 50 per cent band of the
data from the basic protocol.

2.4. Experimental results: speed variations within a trial
When the subjects used a walk–run mixture, the walking
speed was low and the running speed was high, so that the
average speed is as prescribed. Figure 2a shows the trial-
by-trial distribution of speeds pooled over all the outdoor
subjects with GPS speed measurements. As we would
expect, with increasing prescribed average speed, the speed
distribution slowly shifts upward to higher speeds.

Significantly, the speed distribution is double-peaked for
Vavg between 2.0 and 3 m s21. Such double-peaked distri-
butions indicate (many) subjects walking slow and running
fast in a walk–run mixture. At Vavg ¼ 2 m s21, the lower
speed walking peak has a higher enclosed area (in the histo-
gram) than the higher speed running peak, suggesting that
subjects walked for most of the time. The relative sizes of
the peaks are reversed at Vavg ¼ 2.97 m s21, when subjects
ran most of the time. For Vavg below 2 m s21 and above
3 m s21, we observe only a single peak in the speed distri-
butions, indicative of walking or running the whole distance.

Figure 2b shows the raw GPS-derived speed as a function
of time for five subjects, for the Vavg ¼ 2.39 m s21 trial, which
is in the walk–run transition region. For three subjects shown
(subjects 4–6), we see two distinct speed plateaus, corre-
sponding to running and walking. Not all subjects had
such distinct speed plateaus in the transition regime. To illus-
trate subject-to-subject variability (also seen in figure 1), we

show one subject (subject 7) for whom the plateaus are less
distinct, and another subject (subject 8) who used roughly
the same speed over the whole trial.

The stride frequency histograms shown in figure 2c also
show a speed region (about 2–3 m s21) in which the stride
frequency distribution is broader, overlapping both walking
and running stride frequencies. In this region, however, the
histograms are not as distinctly double-peaked, perhaps
both on account of larger subject-to-subject variability and
higher measurement errors in the stride frequencies (see the
electronic supplementary material).

3. Energy minimization as a candidate theory of
gait choice

3.1. On a treadmill, switch to save energy
Margaria [2] and others found that walking requires less
energy at low speeds and running requires less energy at
higher speeds, as also suggested by mathematical models
of bipedal walking and running [7,9–11]. Example walking
and running metabolic rates as functions of speed, based
on published data [12–15], are shown in figure 3a. On a
treadmill, humans switch between walking and running
close to the intersection of the cost curves (Q). While some
researchers [1,16,17] found a small difference (! 0.1 m s21)
between the energy-optimal and measured treadmill tran-
sition speeds (and also a slight difference between the
walk-to-run and run-to-walk transition speeds [1]), others
[18,19] did not; see [9,20] for possible explanations.

We now describe what metabolic energy minimization
predicts in the context of our non-treadmill experiment, first
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Figure 2. (a) Histograms of the speeds at which the subjects travelled during each of the 15 trials with different prescribed average speeds Vavg; pooled over the 10
subjects with GPS speed measurements, with histogram bin width ¼ 0.1 m s21. The histograms have a single peak for low and high prescribed average speed, but
have two peaks for intermediate average speeds, suggesting a walk – run mixture. (b) The unfiltered GPS-derived speed as a function of time during the trial
corresponding to Vavg ¼ 2.39 m s21 and Tallowed ¼ 51 s, for five subjects. Notice the two speed plateaus in subjects 4 – 6. (c) Histograms of stride frequencies
used during various trials, pooled over outdoor subjects with this pedometer-based data. Histogram bin width ¼ 0.1 Hz. The horizontal scale of the histograms are
such that the area within the histogram are the same across different prescribed speeds (proportional to total number of trials). The horizontal grey band across the
histograms (a and c) indicating normal walking and running speeds or frequencies is simply to guide the eye, not meant to be a strict separator.
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ignoring, then considering the cost for transitions between
walking and running.

3.2. Human locomotion energetics preliminaries
For the rest of this article, we will simply use the curves in
figure 3a. The qualitative predictions are preserved as long
as the curves have approximately the same shapes. We use
the notation _E and ‘rate’ to refer to energy per unit time.
The walking metabolic rate data _Ew is adequately fit by a
quadratic function of speed [12,15]: _Ew ¼ a0 þ a2v2; we used
a0 ¼ 1.91 W kg21 and a2 ¼ 1.49 W (ms21)22. For running,
while it is hard to statistically distinguish between linear
[2,21] and quadratic models [14] using metabolic data,
we used a quadratic model _Er ¼ b0 þ b1vþ b2v2, with b0 ¼
5.17 W kg21, b1 ¼ 1.38 W (ms21)21 and b2 ¼ 0.34 W (ms21)22

[13,14]. Finally, humans consume energy while resting (that
is, not moving), modelled here as a constant rate erest ¼
1.22 W kg21 [21].

We combine these three metabolic rates into an ‘effective
cost curve’, shown in figure 3b, by picking the lower of the
three rates at every speed; the resting rate is relevant only
at v ¼ 0.

3.3. Two choices: walk or run
In our experiment, the subjects had to cover a distance
Drequired in time Tallowed. For simplicity, say a subject runs
for time duration lrTallowed at constant speed Vr and walks
for a time duration ð1$ lrÞTallowed at constant speed
Vw, such that she satisfies the distance, and, therefore,
the average speed constraint of the experiment:
ð1$ lrÞTallowedVw þ lrTallowedVr ¼ Drequired. Here, the frac-
tion of time spent running is lr, with 0 & lr & 1.
Rearranging, we have the average speed constraint

ð1$ lrÞVw þ lrVr ¼
Drequired

Tallowed
¼ Vavg:

Subject to this constraint, we wish to find Vw, Vr and lr so as
to minimize the total energy expenditure Etotal over the whole
journey, first ignoring any costs for transients

Etotal ¼ ½ð1$ lrÞ _EwðVwÞ þ lr _ErðVrÞ(Tallowed:

Minimizing Etotal is equivalent to minimizing the average
energy rate _Eavg over the total time duration:
_Eavg ¼ Etotal=Tallowed ¼ ð1$ lrÞ _EwðVwÞ þ lr _ErðVrÞ.

3.4. Optimal solution through the common tangent
construction

Alexander [9] states the correct optimal strategies for the above
problem, without a complete solution. Drummond [22] presents
an elegant solution via the so-called ‘common tangent construc-
tion,’ as described below, while analysing a closely related
exercise called ‘scout’s pace’ that mixes walking and running.

As in figure 3b, average speeds Vavg between speeds VB and
VC can be obtained by walking at speed VB and running at speed
VC. The average energy rate _Eavg for this walk–run mixture is
given by the straight line between B and C, which is also the
common tangent here. Because this straight line is below both
cost curves, the mixture strategy has lower average energy rate
compared with pure walking or running at such Vavg. Thus, a
walk–run mixture is predicted by metabolic energy minimiz-
ation for a range of intermediate speeds (between VB and VC).
For Vavg , VB, it is optimal to walk the entire distance. For
Vavg , VC, it is optimal to run the entire distance.

The necessary and sufficient condition for a walk–run mix-
ture to be optimal for this model is that the effective cost curve
(figure 3b) is non-convex near the intersection point Q. Non-con-
vexity, by definition [23], means that we can draw a lower
tangent to this effective cost curve that touches it at two
points B and C as in figure 3b. To contrast with such non-con-
vexity, we devised the hypothetical walking and running cost
curves of figure 3c, which give rise to a convex effective cost
curve, therefore implying no direct energy benefits from
walk-run mixtures; the chord DE (corresponding to a walk–
run mixture) is strictly above walking and running costs
between D and E, and any lower tangent will touch the curve
at only one point. See the electronic supplementary material,
§S1 for a discussion of convexity and related mathematics.

3.5. Three choices: walk, run or rest
In the above mathematical analysis and in our basic protocol
experiments, the choice was between only walking and
running. Arriving early and resting was not an option.
If we allow resting, for low average speeds Vavg, a mixture
of walking and resting becomes optimal.

The necessary and sufficient condition for the optimality
of a walk–rest mixture is that the resting rate erest is strictly
less than a0, the walking metabolic rate at infinitesimally
small speeds (as is true for human walking [12]). This con-
dition allows us to construct a lower tangent touching the
walking cost curve at A, starting from the resting state
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Figure 3. (a) Metabolic energy rate for walking and running as a function of speed, intersecting at speed v ¼ VQ. (b) The combined ‘effective cost curve’ is shown
in orange, by picking the gait that has the lower cost at every relevant speed: resting at v ¼ 0, walking below VQ, and running above VQ. Walking at speed VB and
running at VC for different fractions of time results in an average metabolic rate as given by the line BC. When BC is the unique common tangent to the two curves,
switching between B and C results in a lower average metabolic rate than is possible by exclusively walking or running (in fact the lowest possible for this model).
This lowering of cost is possible because of the ‘non-convexity’ of the effective cost curve. (c) Hypothetical metabolic rate curves for walking and running that result
in a ‘convex’ effective cost curve, implying no direct energetic benefit from walk – run mixtures.
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(0, erest), as shown in figure 4a. Then, for Vavg , VA, a mixture
of resting and walking at VA is optimal; note,
VA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða0 $ erestÞ=a2

p
. This VA is also the constant walking

speed that minimizes the ‘net’ energy cost per unit distance
E0net ¼ ða0 $ erest þ a2v2Þ=v without time constraints [8].

Figure 4a consolidates the predictions of metabolic energy
minimization, showing the four average speed regimes with
their respective optimal behaviours: walk–rest mixtures
(with walking at VA), constant speed pure walking (walk at
Vavg), walk–run mixtures (walking at VB, running at VC),
and constant speed pure running (run at Vavg). Figure 4b
shows the predicted optimal fractions of resting, walking and
running. Figure 4c shows how the walk–rest and walk–run
mixtures reduce the energy per unit distance E0 ¼ _Eavg=Vavg

over pure walking and running. Note that the walking
speeds VA and VB are not equal to, but are, respectively, less
than and greater than the maximum range speed, which
minimizes the cost per unit distance for walking [8].

3.6. Costs for transients, the number of switches and
finite distances

In the analysis thus far, we have assumed that the energy rate
is purely a function of speed and gait, assuming that neither
changing speeds nor switching gaits entail an energy cost.
Such transients do have a cost, associated with a change in

kinetic energy or limb movement patterns [24]. Without
these costs for transients, the above model implies that one
can switch between gaits arbitrarily often without affecting
the optimality of the walk–run mixture, as long as the
walking and running fractions are unchanged.

As soon as a cost for transients is added to the mathematical
model, say, proportional to change in kinetic energy, having
exactly one switch between walking and running, or exactly
one switch between walking and resting, becomes optimal.
In the electronic supplementary material, §S2, we describe
numerical optimization to obtain the energy optimal gait strat-
egies in the presence of a cost for transients, shown in figure 5a.
Thus, we find that despite transient costs, the qualitative picture
of figure 4a,b is preserved, but the specific transition speeds sep-
arating the various regimes are slightly changed and depend on
Drequired (see the electronic supplementary material, figure S3
expands on figure 5a). The effect of transient costs become
negligible over much larger distances, again giving figures 4a,b.

3.7. Locomotion on long treadmills with transient costs
Unlike short treadmills, long treadmills allow larger voluntary
speed fluctuations while imposing an average speed constraint
over the long term. For treadmill locomotion, there is no explicit
time constraint or distance constraint, but only a constraint that
the person remains on the treadmill. In the absence of transient
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costs, the energy optimal strategies for remaining on the tread-
mill are exactly as in figure 4. However, with transient costs,
substantial walk–run mixtures become optimal only when
the treadmill is long enough. This treadmill-length-dependence
of transition speeds is shown in figure 5b (also in electronic sup-
plementary material, figure S4 for greater detail). These figures
were obtained using numerically computed optimal walk–
run–rest mixtures, subject to the constraint that the person
remains within the treadmill; the numerical computation is
documented in more detail in the electronic supplementary
material, §S3. Thus, if the goal is to simply stay on a long tread-
mill (e.g. an airport moving walkway), instead of traversing it,
energy minimization predicts that humans will walk or run in
place for some speeds, but use walk–stand or walk–run mix-
tures at other speeds, moving against the belt some of the time.

4. Discussion
4.1. Numerical predictions from our model
We are able to explain the qualitative features of walk–run mix-
tures using energy minimization. Using cost curves from
different authors [2,12–15,21,21] will result in slightly different
numerical predictions, by as much as 0.2 m s21 for each of the
predicted transition speeds. Also, averaging cost curves across
subjects can move transition points. Ideally, one should use
subject-specific energy rate curves and test if a subject’s gait
choice is consistent with her specific energetics. For our
assumed cost curves and no transient costs (equivalent to travel-
ling a very large distance), we obtained VA ¼ 0.7 m s21, VB¼
1.45 m s21, and VC ¼ 4.35 m s21 (figure 4). With transient
costs and Drequired¼ 120 m, we obtained VA ¼ 0.7 m s21, VB¼
1.9 m s21, and VC¼ 3.6 m s21 (figure 5a); this predicted
walk–run transition region overlaps with those in figure 1.

The speed VC in figures 4 and 5 is sensitive to the curva-
ture of the quadratic running cost model, approaching the
maximum running speed for a linear model (which still pre-
dicts walk–run mixtures). Because humans never use
maximum running speeds, perhaps the running rate is
indeed slightly curved (assuming energy minimization, not
fatigue, determines speeds). The slight curvature used here
is consistent with metabolic data [13,14]. We ignored other
complexities in the energy models, e.g. post-exercise increases
in energy and oxygen consumption [25].

4.2. Higher variability near transition
Behavioural variability in the running fractions of figure 1a–c
is higher near the gait transition region than away from it
(figure 6). A few plausible mechanisms could contribute to
such variability: (i) within-subject variability, perhaps due
to sensory or computational noise in the human motor
system in deciding which gait to use; because the walking–
running costs are most similar near the transition, the errors
could be higher; (ii) subjects using the correct optimal fraction
for an incorrect average speed (with a given speed error) will
produce variability proportional to the absolute slope of the
running fraction curve lr(v), maximum at the transition; (iii)
pooling different subjects with slightly different running frac-
tion curves shifted sideways will also produce variability
proportional to the absolute slope of the running fraction
curve. See the electronic supplementary material, §S5 for a
related mathematical note.

4.3. Other overground experiments
Recently, some non-treadmill overground gait transition
experiments were performed, in which subjects were asked
to walk with increasing speed and then start running when
they found it natural (e.g. [26] found a transition speed of
2.85 m s21, with 0.5 m s22 natural acceleration). In contrast,
in our more ecological experiment, we did not explicitly
suggest increasing speeds or gait change, allowing more
choice as in daily legged travel.

Also, Hoyt & Taylor [27] and Pennycuick [28] observed
double-peaked speed distributions in free-ranging animals, but
there were no explicit average speed constraints in such contexts.

4.4. Alternative non-energy-based explanations
Partly to address the slight discrepancy between energy opti-
mality and the treadmill gait transition speed, a number of
non-energy-based kinematic and kinetic factors have been posited
as triggering the transition [6,29–35]—usually suggesting that
humans switch to running because some force, strain, velocity
or stability threshold is violated while walking. None of these
intra-stride threshold-based hypotheses, as stated, can explain
why humans use a walk–run mixture when there is no strict
speed constraint. Further, unlike energy minimization, which
predicts many phenomena related to human locomotion at least
qualitatively [9,11], these other hypotheses have been not
systematically tested for phenomena other than gait transitions.

We mention two further alternate hypotheses. First, per-
haps subjects have poor time-to-destination estimation, so
that the subjects initially start to walk and then run when
they realize they have very little time left (or the reverse),
but it is unclear how this could explain various systematic
trends in our experiments without additional assumptions.
Second, we can rule out fatigue as a reason for switching to
walking after running for a while, as subjects were able to
run the whole way at higher speeds in other trials. Also, our
trials were short enough that fatigue is unlikely to be an
issue. On the other hand, in the presence of fatigue, multiple
switches between walking and running may well become
favourable [22]. For instance, some animals use intermittent
locomotion to extend their endurance [36] at high average
speeds, while briefly exceeding their maximum aerobic speed.

Finally, while we have focused on energy minimization to
explain trends, we recognize that animals must trade-off
energy minimization with other constraints and goals [9]. Our
implicit assumption is that the cost curves used here are for
movements that have already taken such trade-offs into account.

1 2 3 40

0.4

0.6

0.2

prescribed average speed (m s–1)

75th–25th percentile
of running fraction

standard 
deviation

Figure 6. Two measures of variability in running fractions from figure 1a.
Variability is maximal in the transition region, where the running fraction
also has the greatest slope.
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4.5. What energy should we minimize?
We have assumed that subjects minimize the total energy cost
over the experimentally allowed task duration (equivalently,
the whole day [8]). Instead, if humans minimize the energy
to arrive at the destination, not counting resting after arriving,
the predictions for large distances are identical to figure 4a,b
except the walking speed VA in a walk–rest mixture is replaced
by the so-called maximum range speed, the minimum in
figure 4c, given by

ffiffiffiffiffiffiffiffiffiffiffi
a0=a2

p
, typically 1.2–1.4 m s21 [8].

Also, in their daily life, instead of minimizing energy sub-
ject to a time constraint, it may be that humans trade-off a
cost for time and energy, resulting in slightly higher speeds
than predicted by pure energy optimality [37].

4.6. When should we minimize energy?
In future work, we suggest repeating our experiments over a
range of distances, including much shorter (25 m, say) and
much longer distances (3 km, say), to test if the results in
figures 1 and 2, and other behaviour, change systematically.
Over much longer distances, without practise and visual
landmarks, perhaps humans will have greater difficulty jud-
ging time and distance to destination, and as a consequence,
perhaps there will be greater behavioural variability.

It is sometimes argued that over short distances, humans
and other animals may not move in a manner that minimizes
energy because this energy would be a small fraction of the
daily energy budget [38]. While plausible, this hypothesis
has not been tested systematically. Below, we provide a few
inter-related reasons for why humans may minimize energy
even at short travel distances considered here.

First, we have shown empirically that over relatively short
distances of 100 m, human behaviour seems qualitatively consist-
ent with energy minimization. At least for steady walking, there
are no major observed differences in how people walk a short dis-
tance versus a much longer distance (in the absence of fatigue); so
the same principles may underlie walking both short and longer
distances. Further, the walk–run strategy for minimizing energy
over many thousand metres is the same as the walk–run strategy
for minimizing the energy for a few hundred metres (with minor
quantitative differences). Thus, one does not have to evolve or
learn qualitatively different strategies for different distances.

Finally, we note that energy is a ‘fungible’ quantity. That is,
metabolic energy saved in one task is available for use in any
other task. (Fungibility is an economics concept, used most com-
monly as a descriptive property of money.) In the absence of
other trade-offs and constraints, evolutionary processes could
not differentiate between energy saved in one big task versus a
hundred small tasks. Thus, energy reductions in the hundred
small tasks might be as likely as in the one big task, if we con-
trolled for the complexity of the two sets of tasks. To be sure, it
is possible for human motor behaviour to be inconsistent with
the fungibility of energy, just as there is evidence from behaviour-
al economics that spending behaviour is sometimes inconsistent
with the fungibility of money [39]. This is an open question for
future empirical study.

4.7. Cognitive and motor mechanisms governing gait
choice.

While we do not know how humans adjusted their gait strategy
in our experiments, we see evidence of both feedback and feed-
forward mechanisms [40]. In the short Tallowed trials, the subjects

realize immediately that they have to run relatively fast to arrive
on time, suggesting feed-forward mechanisms that convert the
cognitively provided distance–time constraints into gait. And
later in each trial, the subjects typically speed up or slow down
to correct for earlier misestimations of the speed required,
suggesting feedback mechanisms.

5. Related phenomena, conjectures and other
applications

In this section, we discuss related situations that might benefit
from similar models, make conjectures partly informed by
available energy data, suggesting future experiments.

5.1. Moving walkways
Say the goal is to go from one end of a very long treadmill (e.g. an
airport moving walkway) to the other, instead of just staying on
the treadmill. If the goal speed is 1.2 m s21 (say) relative to the
ground, a walkway speed of 0.7 m s21 requires 0.5 m s21 relative
to the walkway, at which average speed a walk–rest mixture may
be optimal. Thus, we conjecture that faster walkways may pro-
mote more standing, possibly resulting in congestion and
reduced people transport (see [8] for a similar conjecture).

5.2. Keeping up with someone else: human children,
animals on a leash, etc.

Human children have a lower walk–run transition speed
than adults. Extrapolating children’s gait transition data in
Tseh et al. [17] suggests that children with leg length of
50–55 cm will have a transition speed of about 1.4 m s21,
close to adult preferred walking speeds. Thus, while travel-
ling with a parent at 1.4 m s21, a small child might benefit
energetically from a walk–run mixture; the walking–running
cost curves for slightly older children [41] continue to show
the necessary non-convexity, but such data are not available
for very small children. We speculate that this energy benefit
may get reflected in the child walking slowly and then run-
ning to catch up or overtake the parent, sometimes leading
or lagging. While children’s activity is often burst-like [42],
we do not know of parent–child co-locomotion studies.

Similarly, dogs transition from walking to trotting between
0.9 and 1.3 m s21 depending on size [43]. While we could not
find walking–trotting energy data for dogs, we see evidence of
the energy non-convexity necessary for walk–trot mixtures in
horses and goats [27,44]. Extrapolating from these quadrupeds,
we conjecture that dogs on a long leash, accompanying a walking
human, might benefit from walk–trot mixtures (as might goats
and horses at other speeds).

Finally, when animals (whose juveniles benefit from adult
protection) migrate, juveniles and adults often travel long dis-
tances at the same average speed. For such animals, the
adult’s maximal range speed may (if the speeds so conspire
and given the necessary non-convexity) correspond to a mix-
ture of gaits for a juvenile, or vice versa. Such behaviour is
not necessary, of course. For instance, both adult and juvenile
gnus apparently use a mixture of walking and cantering [28].

5.3. Animals on very slow treadmills
Various untrained animals, especially small animals, when
placed on a slow treadmill, sometimes perform a mixture of
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standing still, coasting to the backof the treadmill, and then scoot-
ing forward, giving the impression of being hard to train;
researchers often have to use some stimulation to get the animal
to move steadily [45]. We conjecture that some of this behaviour
could be due to the energy optimality of walk–rest mixtures.
Recall that the necessary condition for such optimality is that
the resting cost be less than the extrapolated locomotion cost at
zero speed, documented for white rats by Schmidt-Nielsen [46].

5.4. Walk faster if you can lie down at the end
So far, we have used a single resting energy rate erest. Given that
standing, sitting and lying down have progressively lower
energy costs [47], energy minimization over the whole time dur-
ation implies, surprisingly, a higher walking speed in walk–rest
mixtures if the subject is allowed to lie down on arrival than if the
subject is allowed to only stand on arrival. See the electronic sup-
plementary material, figure S5. We have not extensively explored
experimental protocols involving rest, except the arriving-early
variant in figure 1c, in which subjects did arrive early when
Tallowed was large. Also, the experiment needed to test the
above prediction may not be very ecological.

5.5. Altered body or environment
The walking and running cost curves, in humans and in other
animals, are affected by changes either to the body or to the
environment (e.g. wearing a loaded backpack, going uphill
or downhill, altered gravity). The predicted speed regime cor-
responding to optimality of a walk–run mixture will be
affected by such changes, which can be tested by repeating
the experiments herein in those altered circumstances.

5.6. Marathoners, hunters and soccer players
During marathons and ultra-marathons, runners sometimes use
a walk–run mixture [48], partly explained by fatigue. But note
that the average US marathon finish times including non-elite
runners are 4.5–5 h, with average speeds of 2.3–2.6 m s21,
when a walk–run mixture is energetically beneficial, as pointed
out earlier by Alexander [9] and Drummond [22]. Analogously,
humans that run 10-min miles (2.7 m s21) might need less
energy using walk–run mixtures (extrapolating figure 4a).

Human ‘persistence hunters’ pursue prey for many hours,
mixing running and tracking the animal. Hunts witnessed by Lie-
benberg [49] in the Kalahari averaged 1.75 m s21. While energy-
minimizing humans might mostly walk with a small running
fraction at these average speeds (using figure 1a or 4b), it may
be worthwhile to study the gait fractions used by the hunters,
likely different from energy optimal owing to hunting constraints
(like keeping up with the animal), resulting in extra energetic cost.

Analogously, over a 90-min game, soccer players average
about 2.1 m s21 [50]. Given various game-play constraints
(defending, intercepting, etc.), which clearly supersede
energy conservation, one might quantify the extra energy
such constraints impose, over and above the minimum
energy required at the observed average speed; also of
interest may be the speed and gait distributions.

5.7. Other transport modes: flying, swimming and
driving

Finally, we remark that the optimality of mixture strategies may
not be exclusive to legged locomotion. For instance, bounding

flight in small birds, the intermittent swimming of mammals,
and extreme accelerate–coast mixtures in some cars (also called
burn and coast, or pulse and glide), especially those that partici-
pate in ‘eco-marathon’ races, have been argued to reduce energy
consumption [51–53]. It may also be of interest to see whether
legged robot locomotion cost curves have the necessary non-
convexity, implying energetic benefits for using gait mixtures.

6. Conclusion
We observed that humans use a walk–run mixture at intermedi-
ate average locomotion speeds and argued that this behaviour is
consistent with energy optimality. We have commented on poss-
ible application of the ideas to superficially diverse phenomena
in humans and other animals. Exploring these related phenom-
ena (and the underlying assumptions) quantitatively with
controlled experiments and using subject-specific energy
measurements for the mathematical models would enable us
to better understand the limitations of energy minimization as
a predictor of animal movement behaviour.

7. Material and methods
The protocols were approved by the Ohio State University’s Insti-
tutional Review Board. Subjects participated with informed
consent. The subjects’ (n ¼ 36, aged 20–32, eight female) had
mean body mass 74.2 kg (12 kg s.d.) and mean height 1.79 m
(0.078 m s.d.).

7.1. Basic experimental protocol
The outdoor subjects (n ¼ 19) used a relatively straight and horizon-
tal sidewalk. The indoor subjects (n ¼ 9) performed them in a 2.5 m
wide building corridor. Total distance was Drequired¼ 122 m. We
used 15 different total times Tallowed, giving average speeds of 1 to
3.8 ms21: 32, 34, 36, 38, 41, 44, 47, 51, 55, 61, 68, 76, 87, 102 and
122 s, presented in a random sequence. The subjects had no practice
trials specific to these time durations except for a single initial prac-
tice trial to ensure protocol understanding. All subjects wore a watch
(Garmin Forerunner 305) that recorded stride frequency from a ped-
ometer (Garmin footpod). Some outdoor subjects (n ¼ 10) carried a
high-end GPS unit (VBOX Mini, Racelogic UK) to measure speed
accurately. See the electronic supplementary material for more
details about the subject population, protocol and instrumentation.
The outdoor experiment required the subject to travel in only one
direction from S to E. In the indoor experiment, S and E coincided
and the subject turned back midway.

7.2. Variants of the basic protocol
We performed minor variants of the basic protocol for a total of n ¼
8 subjects. For n ¼ 3 subjects, we repeated each speed three times,
for a total of five speeds in random sequence. For n ¼ 2 subjects,
each of 10 average speed trials had a different distance, ranging
from 70 to 250 m. For n ¼ 2 subjects, subjects could arrive earlier
than Tallowed. For one subject, we used a fixed longer distance
244 m for all trials.

We thank Andy Ruina from whom M.S. learnt about the possible
optimality of walk–run mixtures, credited here to earlier work by
Alexander [9] and Drummond [22]. Thanks to Alison Sheets,
Carlos Castro, Yang Wang, the rest of the Movement Laboratory,
and four anonymous reviewers for insightful comments.
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This Supporting Information appendix has the following pieces.

1. Section S1. Optimality of mixture strategies arising from ‘non-convexity.’ This section
describes in greater mathematical detail why non-convexity of cost curves result in mixture strategies,
and proving the results for a more general optimization problem allowing arbitrary speed changes.
Supports sections 3.2-3.5 of the primary manuscript.

2. Section S2. E↵ect of transient costs: Overground locomotion (Numerical Optimization).
This section describes in greater detail the mathematical formulation and the numerical optimization
methods for the energy minimization calculation corresponding to overground locomotion including
costs for transients. Supports section 3.6 of the primary manuscript.

3. Section S3. Treadmill locomotion: Long versus short treadmills (Numerical Optimiza-
tion). This section describes in greater detail the mathematical formulation and the numerical opti-
mization methods for the energy minimization calculation corresponding to treadmill locomotion, for
finite treadmill sizes. Supports section 3.7 of the primary manuscript.

4. Section S4. Further experimental details and observations. This section discusses more
technical information about the experimental protocol, including measurement accuracy, data process-
ing procedures, and some discussion. Supports Material and Methods and section 2 of the primary
manuscript.

5. Section S5. Why more behavioral variability near the transition. This section contains
the mathematics for a brief remark made in the primary manuscript (section 4.2) about the relation
between the observed variability in gait fractions and the slope of the mean gait fraction curve.

6. Figure S5. Provides the geometric proof of a paragraph (section 5.4) of the primary manuscript:
“walk faster if you can lie down at the end.”
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S1 Optimality of mixture strategies arising from ‘non-convexity’

On account of its potential broader applicability to human and animal behavior, we discuss the basic mathe-
matics involved in the optimality of “mixture strategies” (such as walk-run mixtures) in an abstract setting.
We then consider the special case of using walk-run or walk-stand mixtures in time-constrained locomotion.
More sophisticated discussions are implicit in various math and physics texts on convex analysis and phase
transitions. e.g., [1, 8, 7]. For simplicity, we assume that the functions involved are su�ciently well-behaved
so that we may dispense with specifying the general smoothness conditions under which the following claims
are true. We also only consider strict inequalities, ignoring the di↵erence between convex and strictly convex.

0

Cost rate f(v)

Cost 
rate 
(W/kg)

Velocity v

Non-convex 
function

Lower 
convex 
envelope

Obtained by 
mixing B and C

Obtained by 
mixing D and E

Convex 
function

0

Cost rate  f(v)

Velocity v

BA

A
B

C

A

Baverage of f(v)
= λ f(vA)+ (1-λ) f(vB)

f (average) =  
f(λ vA+ (1-λ)vB)

C
D

E

Fa) b) c)

10 2 3 4 5

10

20

Resting
cost

“Effective cost rate curve”
Combined resting, walking and running 
cost rates (their lower envelope)

Lower convex envelope
of resting, walking 
and running 
cost ratesvavg= λ vA+ (1-λ)vB

Prescribed average velocity v (m/s)

Figure S1: a) A convex function is shown (solid red line). A strictly convex function is one for which the straight line
joining any two points on it is strictly above that function. b) A non-convex function (solid red line) and it’s lower
convex envelope (dotted line) are shown. The straight line BC (DE) is a lower tangent to the function, touching it
at two points of tangency B and C (D and E). c) We apply the ideas in panel-b to the combined ‘e↵ective cost curve’
obtained for resting, walking, and running (solid pink line). The lower convex envelope (dotted line) deviates from
the cost function at really slow average speeds (below A) when a walk-rest mixture is optimal and at intermediate
speeds (between B and C) when a walk-run mixture is optimal. From A to B, pure walking is optimal and to the
right of C, pure running is optimal.

Convex functions. Colloquially, a function f(v) is called convex if it is, in a general sense, ‘bowl-shaped.’
Here, we identify the scalar function f(v) with the energy or cost rate, and the scalar variable v with forward
speed, but the following considerations are independent of such identification. A strictly convex function (as
shown in Figure S1a) is such that any line connecting two points A and B on it, will lie entirely above the
function between A and B. This statement can be written in terms of weighted averages (also called ‘convex
combinations) as follows.

The weighted average of velocities vA and vB is v

avg

= �vA + (1 � �)vB . We use 0 < � < 1, so that
vA < v

avg

< vB . Convexity implies that the function value at this weighted average f(v
avg

) is always below
the weighted average of the function values f(vA) and f(vB):

f(�vA + (1� �)vB) < �f(vA) + (1� �)f(vB). (S1)

In Figure S1a, the left hand side of the above inequality is the point on the convex function denoted by a
five-pointed star and the right hand side is the corresponding point on the straight line between A and B
denoted by a square.

Non-convex functions. Non-convex functions have some regions where the inequality Eq. S1 is reversed.
For instance, the non-convex function shown in Figure S1b is such that between B and C, the function value
is above the straight line joining B and C. That is,

f(�vB + (1� �)vC) > �f(vB) + (1� �)f(vC). (S2)

for 0 < � < 1. In other words, the value obtained by averaging f(vB) and f(vC) can be lower than f(v
avg

).

Lower convex envelope. The lower convex envelope of a convex function (for instance, the function in
Figure S1a) is the convex function itself. The lower convex envelope of a non-convex function is constructed
as follows. For each v, first consider the tangent to the function f(v). For v such that the tangent is entirely
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below the whole function (except for the point of tangency), such as in the intervals A to B, C to D, and E
to F in Figure S1b, the lower convex envelope is equal to the function f(v). But then, in the other regions,
for instance from B to C and D to E, the non-convex function is replaced by a tangent to the function that
touches it (tangentially) at two points. B, C, D, and E are points of tangency of these supporting tangents
(shown as dashed lines). Thus the lower convex envelope of the non-convex function in Figure S1b is the
dashed curve consisting of straight-line parts and curved parts. To give a physical analogy, the lower convex
envelope is the curve traced by a taut flexible string ‘supporting the non-convex function’ from below.

Lower convex envelope is the optimal attainable by averaging. It turns out that the lower convex
envelope of a function is the lowest function value one can get by taking the weighted average of any two
points on the curve, for a given weighted average v

avg

. In other words, if we wish to find v

1

, v

2

and � such
that the weighted average g = �f(v

1

)+(1��)f(v
2

) is minimized, constrained by v

avg

= �v

1

+(1��)v
2

, then
the function that we get as a function of v

avg

is the lower convex envelope. The construction of the lower
convex envelope in the previous paragraph essentially replaces the function value f(v) with the lowest value
obtainable by taking averages of function values at other points. Stated di↵erently, the lower supporting
tangents, such as BC and DE are the lowest chords we can get while still touching the function at two points.

Application to the locomotion energy curves. With only a little modification, the above analysis can
be applied to the optimization problem involving a choice between walking, running, and resting. First, we
replace the three di↵erent energy rates, the resting energy rate e

rest

(defined only at v = 0), the walking
energy rate Ėw(v) and the running energy rate Ėr(v) by a single function f(v) defined as the lower among
the three costs at each applicable velocity. This function f(v), called the ‘lower envelope’ (the ‘e↵ective cost
curve’ of the primary manuscript) as opposed to the ‘lower convex envelope,’ is shown as a solid pink line
in Figure S1c. This f(v) curve is the best attainable cost for ‘pure strategies.’ Notice that this function
f(v) is not convex. Therefore, if we allow weighted mixtures of two gaits and/or speeds, the lower convex
envelope (shown as a dotted line in Figure S1c) of the lower envelope f(v) is the best attainable cost rate.
As discussed in the main text, at low v to the left of A, we see that a walk-rest mixture is best, and between
B and C, a walk-run mixture is optimal. Between A and B, the lower convex envelope hugs the walking cost
curve, so pure walking is optimal. Beyond C, the lower convex envelope hugs the running cost curve, so pure
running is optimal.

This completes our discussion of the optimal locomotion strategies in Figure 3 and 4 of the main article.

Can we do better by averaging more than two points? No. It turns out that the best reduction in
average value is obtained by mixing at most two points on f(v).

The proof of this claim uses a generalized version of the inequality in Eq. S1, called Jensen’s inequality
[1, 5]. For a strictly convex function f(v), if we consider using a mixture of finitely many vi, we have:

f(�
1

v

1

+ �

2

v

2

+ �

3

v

3

+ . . .) < �

1

f(v
1

) + �

2

f(v
2

) + �

3

f(v
3

) + . . . (S3)

where �

1

+ �

2

+ �

3

+ . . . = 1. Even more generally, for a continuously or discontinuously changing velocity
function v(t) (‘measurable’ v(t) [5]) with some average v

avg

and for a strictly convex function f(v):

f(v
avg

)
| {z }

function at the average

<

1
T

Z T

0

f(v(t)) dt

| {z }
average of the function

given an average v constraint
1
T

Z T

0

v(t) dt = v

avg

.

(S4)
These inequalities essentially say that if we have a convex cost rate, we cannot lower it by averaging over
two, three, or infinitely many points. Observing that the ‘lower convex envelope,’ obtained by averaging at
most two points, is already convex, we cannot lower it any further by averaging two or more points on it.
Thus, the best attainable average cost rate at a given v

avg

is given by the lower convex envelope.

S2 E↵ect of transient costs: Overground locomotion (Numerical Optimization)

In this section, we discuss the methods we used to obtain Figure 5a of the main manuscript, in which we
display the optimal transitions in the presence of costs for transients.
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First, consider two extremes: (1) when the transition costs are large enough, any transition in speed or
gait will be disfavored, so it would be optimal to walk all the way or run all the way at constant speed equal
to the prescribed average; (2) when the transition costs are negligible, the optimal strategies approach that
discussed above in section S1 and in Figures 3-4 of the main article. Below, we consider situations between
these two extremes; we may expect optimal mixture strategies when the increased cost due to a transient is
more than made up by a cost reduction due to using a mixture.

Optimal gaits with transient costs: a numerical optimization solution. We now discuss the prob-
lem of traveling a finite distance overground, in a given amount of time, while minimizing the total metabolic
energy cost, with a cost for any velocity transients. In particular, we consider locomotion strategies of the
form Figure S2a, with exactly resting phase, walking phase, and running phase. The velocity starts at zero
and ends at zero.

a) A general strategy for traveling a 
finite distance overground

mixture of resting, walking, and running

b) Possible general strategies for locomotion on a long treadmill 

Vwalk Vwalk Vwalk

Vrun

Vtreadmill

Vtreadmill

Twalk TwalkTwalk

Trest Trest

Trun
Trun

Vrun

Mixture of resting and walking Mixture of walking and running

Speed
Speed Speed

Time Time Time

Figure S2: Space of locomotion strategies considered for the numerical optimization problems. a) Overground
locomotion for a finite distance. We consider strategies that, most generally, use a mixture of walking, running and
resting (exactly one phase each), with the possibility of the various special cases. b) Locomotion on a bounded
treadmill. We consider two possible general strategies: a walk-rest mixture and a walk-run mixture, along with their
various special cases.

The unknowns of the optimization problem are T

rest

, T

walk

, T

run

, V

walk

, and V

run

, as seen in Figure S2a.
In addition to the metabolic rates corresponding to resting, walking, and running, we have a cost for changes
in velocities, proportional to the positive or negative work performed in the transition, equal to the changes
in kinetic energy (again, mass-normalized):

Increases in kinetic energy = Decreases in kinetic energy =
✓

1
2
V

2

run

� 1
2
V

2

walk

◆
+

✓
1
2
V

2

walk

� 0
◆

=
1
2
V

2

run

.

(S5)
Thus, the total cost of the journey is:

E

total

= Ė

rest

T

rest

+ Ė

walk

(V
walk

) T

walk

+ Ė

run

(V
run

) T

run| {z }
cost for steady state locomotion and resting

+ (b
1

+ b

2

)
1
2
V

2

run

| {z }
total transition cost

. (S6)

The scaling coe�cients b

1

= 4 and b

2

= 1.2 are the reciprocals of the muscle e�ciencies for performing
positive and negative work [3, 6]. The usual total time and total distance constraints hold:

T

rest

+ T

walk

+ T

run

= T

allowed

(S7)
and V

walk

T

walk

+ V

run

T

run

= D

required

. (S8)

In addition, we have some natural inequality constraints:

V

walk

, V

run

� 0 (S9)
and V

walk

 V

run

. (S10)
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Figure S3: Optimal walk-run-rest strategies for overground locomotion in the presence of transient costs, when
traveling a finite distance (distances considered: 120 m, 60 m, 30 m and 15 m). a) Optimal fractions of resting,
walking, and running are shown as a function of prescribed average speed, for di↵erent total distances. Notice that
the speed regime in which a walk-run mixture is optimal shrinks for shorter distances. b) The optimal walking and
running speeds to be used are shown. Notice that in the walk-run mixture regime, the walking speed is lower than
the running speed; the di↵erence between these two speeds decreases as the total distance decreases.

The above mathematical optimization problem requires the minimization of nonlinear functions of a
few variables, subject to a mixture of equality and inequality constraints, both linear and nonlinear. Such
optimization problems are called “nonlinear programming” problems. Local minima to such problems may
be obtained reliably using nonlinear programming software using methods such as ‘sequential quadratic
programming,’ for instance, as implemented in SNOPT or NPSOL [2, 4].

The general locomotion strategy we have assumed, involving a mixture of resting, walking, and running
(Figure S2a), can retrieve as special cases all of the following strategies: rest-walk mixture, pure walking,
walk-run mixture, and pure running, without any loss of generality. More significantly, the special cases are
obtained with no extra cost penalty as follows. Optimal rest-walk is obtained by T

run

= 0 and V

run

= V

walk

.
Optimal pure walking is obtained by T

rest

= 0, T

run

= 0, and V

run

= V

walk

. Optimal walk-run is obtained
by T

rest

= 0. Optimal pure running is obtained by T

rest

= 0, T

walk

= 0, and V

run

� V

walk

.
We used the optimization program SNOPT [2] to solve this optimization problem (see [7] for some more

details on such optimization problems). We solved the problem for four di↵erent distances D

required

= 120
m, 60 m, 30 m, 15 m. For each of these distances, we considered 50 di↵erent T

allowed

, corresponding to
prescribed average speeds between 0.1 and 5.2 m/s. We solved for the optimal solution for each of these
D

required

-T
allowed

combinations. The optimal strategy as a function of the prescribed average speed is shown
in Figure S3a-b. For each of these optimization problems, we used about 50 initial seeds for the optimization;
if the optimization converged to apparently di↵erent local minima, we pick the optimum with the least cost
at a given D

required

-T
allowed

combination (essentially assuring that we found the global optimum, given the
simplicity of the problem).

Qualitatively, the optimal solutions are as we would expect. When the total distance is large-enough, the
qualitative features of the optimal strategies are essentially identical to the case when no transient cost was
considered (Figures 3-4 of the main article). This is because over long distances, the transient costs become
negligible compared to the steady state costs integrated over the whole time. When the distance becomes
smaller, the di↵erences with the no-transient-cost case become apparent:
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1. The walk-run mixture regime becomes smaller and smaller as the distance becomes smaller, essentially
vanishing at 15 m. This is because the transient cost (which is a one-time cost) becomes substantial
compared to the benefit derived from using a mixture (which scales with distance traveled). The e↵ect
of the transition cost is less on the walk-rest mixture regime as the transition cost due to kinetic energy
of walking is smaller.

2. During walk-run mixtures, the walking speed is lower than the running speed. But the di↵erence
between the walking and running speeds used in these walk-run mixtures decreases as the total distance
reduces (because too high a speed di↵erence entails too high a transition cost).

3. There appears to be a discontinuous reduction in the walking speed when we go from a pure-walk
regime to the walk-run regime. This discontinuity is due to a non-zero transient cost; the discontinuity
decreases to zero if the proportionality constant on the transient cost (b

1

+ b

2

) is taken to zero.

S3 Treadmill locomotion: Long versus short treadmills (Numerical Optimiza-
tion)

When a treadmill is very short, as most treadmills are in the real world, walk-run mixtures are unlikely
to provide large energy benefits (without fatigue mechanisms), because of the costs of switching gaits or
switching speeds. But if the treadmill is very long and the task is to stay on the treadmill, the optimal
strategies at various treadmill speeds will be just as discussed in the main article (Figure 3a-b), because in
this limit, the transition costs will become negligible compared to steady state costs.

To explore the e↵ect of bounded treadmill size, we solved numerical optimization problems analogous
to those solved in the previous section (section S2), but adapted to the treadmill context. The treadmill
context is di↵erent from the overground context in three key ways:

1. For treadmill locomotion, there is no explicit time constraint, but only that the person remains on the
treadmill. So the speed and gait of the subject is assumed to be periodic with some unknown period
T

period

, repeating forever. Walking or running at constant speed is a special case, as are walk-run and
walk-rest mixtures. For a walk-run mixture, the subject would alternate periodically between walking
and running.

2. The subject’s velocity fluctuations should be such that her position can never lie outside the extent of
the treadmill. That is, the subject has a “position constraint.”

3. The task is simply remain on the treadmill (and not necessarily get anywhere). Thus, the energy cost
to be minimized would be the average metabolic rate over a long period of time: E

period

/T

period

.

Say the constant treadmill speed is V

avg

; we use this notation because V

avg

will also be the average speed
of the subject over a period. The treadmill length is D. The subject is assumed to remain on the treadmill
if her fore-aft position x satisfies 0  x  D.

Optimizing among walk-rest strategies. We consider two distinct general strategies from which to
find an optimal strategy: a periodic walk-rest strategy shown in Figure S2b and a periodic walk-run strategy
shown in Figure S2c. First, we consider walk-rest strategies.

For optimizing over walk-rest strategies (see Figure S2b), the unknowns are T

rest

, T

walk

, and V

walk

, and
in addition, the initial position of the subject x

0

along the treadmill (0  x

0

 D). Here, the unknown
speed V

walk

is relative to the treadmill, so that the speed relative to the ground will be V

walk

� V

avg

when
walking (and 0�V

avg

when resting). The subject’s position x(t) relative to the ground as a function of time
t is then given by:

x(t) = x

0

+ (0� V

avg

) t for 0  t  T

rest

, (S11)
x(t) = x

0

� V

avg

T

rest

+ (V
walk

� V

avg

) (t� T

rest

) for T

rest

 t  T

rest

+ T

walk

. (S12)

Because we have assumed that the subject’s motion is periodic, the subject’s position must return to x

0

at
the end of one period T

period

= T

rest

+ T

walk

:

x

0

� V

avg

T

rest

+ (V
walk

� V

avg

) T

walk

= x

0

.
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The constraint of remaining on the treadmill for all time reduces to:

0  x(t)  D for 0  t  T

period

,

where T

period

= T

rest

+ T

walk

. We convert this continuous-time constraint into finitely many constraints by
enforcing the inequality at a few salient times (see [7]).

The total energy cost to be minimized is the average metabolic energy rate over one period:

Ė

avg

=
e

rest

T

rest

+ Ė

walk

(V
walk

)T

walk

+ 0.5 (b
1

+ b

2

)V 2

walk

T

period

.

In the above cost expression, the 0.5 (b
1

+ b

2

)V 2

walk

term is due to the work done during transients.
We now have a nonlinear programming problem, as before. Note that the walk-rest strategies can give

rise to pure walking as a special case with T

rest

= 0 and T

walk

> 0.

Optimizing among walk-run strategies. For a walk-run strategy, the unknowns are T

walk

, T

run

, V

walk

,
and V

run

, and the initial position of the subject x

0

along the treadmill (0  x

0

 D). The subject’s position
relative to the ground as a function of time t is then given by:

x(t) = x

0

+ (V
walk

� V

avg

) t for 0  t  T

walk

, (S13)
x(t) = x

0

+ (V
walk

� V

avg

)T

walk

+ (V
run

� V

avg

) (t� T

walk

) for T

walk

 t  T

walk

+ T

run

. (S14)

The subject’s periodicity requires that the subject’s position return to x

0

at the end of one period T

period

=
T

walk

+ T

run

:
x

0

+ (V
walk

� V

avg

) T

walk

+ (V
run

� V

avg

) T

run

= x

0

.

The constraint of remaining on the treadmill for all time reduces to:

0  x(t)  D for 0  t  T

period

,

where T

period

= T

walk

+ T

run

. The total energy cost to be minimized is:

Ė

avg

=
Ė

walk

(V
walk

) T

walk

+ Ė

run

(V
run

) T

run

+ 0.5 (b
1

+ b

2

)
�
V

2

run

� V

2

walk

�

T

period

.

In the above cost expression, the term 0.5 (b
1

+ b

2

)
�
V

2

run

� V

2

walk

�
is due to the work done during transients.

Again, we have a nonlinear programming problem. Note that these walk-run strategies can give rise to both
pure walking (T

walk

= 0 and V

walk

= V

run

) and pure running (T
run

= 0 and V

walk

= V

run

) as special cases.

Optimal solution and results. We solve the optimization problems using SNOPT [2], for given treadmill
length D and treadmill speed V

avg

. We consider five di↵erent treadmill lengths D = 40 m, 10 m, and 1 m.
At each of these treadmill lengths, we solved both the walk-rest optimization problem and the walk-run
optimization problem for a range of treadmill speeds from 0.1 m/s to 5.2 m/s. For each of these optimizations,
we started from about 20 random initial seeds to increase the chances of finding the global optimum. For
each D and V

avg

, we declare the converged solution with the lowest cost as the putative global optimal
strategy.

Figure S4 shows the result of the numerical optimizations for di↵erent treadmill lengths. As usual, there
are four regimes, a walk-rest regime, a pure constant-speed walking regime, a walk-run regime, and a pure
constant-speed running regime.

During a walk-run mixture, the subject runs faster than the treadmill, so moves forward relative to the
ground, and then walks slower than the treadmill, moving backward relative to the ground. Figure S4a
shows that for walk-run mixture regime is larger for the 40 m treadmill, and is essentially non-existent for a
1m treadmill. The di↵erence in the walking and running speeds in the optimal walk-run mixtures decreases
to zero as the treadmill length decreases, as seen in Figure S4b.

During a walk-rest mixture, the subject walks faster than the treadmill, traveling forward relative to the
ground, and then rests, traveling toward the back of the treadmill. The time period of either a walk-run or
a walk-rest mixture is determined by the length of the treadmill.

We suggest that experiments verifying these predictions be performed on airport moving walkways, whose
speeds can be changed continuously (unfortunately, many moving walkways have a fixed gearbox with no
simple provision for changing speeds).
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Figure S4: Optimal walk-run-rest strategies for locomotion on a treadmill with finite length. a) The resting, walking,
and running fractions for three di↵erent treadmill lengths are shown, as a function of the constant treadmill speed.
The 40 m treadmill is depicted with the thickest lines, and has the broadest regimes in which a walk-run mixture is
optimal; the 1m treadmill, depicted with the thinnest lines, has a sharp transition between walking and running, with
a vanishing walk-run mixture regime. The walk-run transition regime becomes smaller with treadmill length. b) The
optimal walking and running speeds to be used on treadmills of di↵erent lengths. Outside of the mixture-regimes,
it is optimal to walk or run at exactly the treadmill speed. In the walk-run mixture regime, the running speed is
higher and the walking speed is lower than the treadmill speed; the separation between walking and running speeds in
the transition regimes becomes smaller as the treadmill becomes smaller. c) The average metabolic energy rate as a
function of treadmill speed, for di↵erent treadmill lengths. For 40 m treadmills, because the subject can do a mixture
of walking and running, with comparatively little transition cost, the optimal energy rate is close to the lower convex
envelope of the cost curves. For the 1m treadmills, the subject essentially walks or runs at the treadmill speed, so
the average metabolic rate follows the individual cost curves more closely.

S4 Further experimental details and observations

Video-based running fractions. Independent counts of running fractions by the two researchers watch-
ing videos of the experimental trials produced the same numbers typically to about a second. When the
choice was between walking and running, the walking fraction includes any left-over time if the subject
arrived early to her destination or, essentially equivalently, slowed down dramatically before the destination.
Thus, e↵ectively, the subject can only arrive late. No systematic di↵erences were seen when the equivalent
of Figure 1 in the main article was plotted for men versus women, or the top 25 percentile of leg length
versus the bottom 25 percentile.

Speed measurements. The speed measurements displayed in Figure 2a-b of the main article are from a
high-end Global Positioning System (GPS) device VBOX MINI (Racelogic UK). The speed is reported at
10 Hz and the GPS device’s documentation claims an accuracy of 0.03 m/s when 4 consecutive samples are
averaged. Even if this was an underestimation by a factor of 5, the resulting accuracy would be su�cient for
the claims made in the article, in which we try to discriminate speed peaks that are separated by about 1
m/s. The GPS device weighs less than 900 grams and was worn by the subjects at their hip in a light utility
belt. The subjects wore a light bike helmet with an external GPS antenna. These GPS subjects’ behavior
was not di↵erent from the rest.

Ten outdoor subjects performed our basic protocol experiments with this GPS device. The rest of the
subjects did not have this device on them. No filtering or smoothing of the GPS derived speed was performed
in the creation of Figure 2a-b of the main article. As noted in Figure 2b, not all subjects had a two-peaked
speed profile. While 10 subjects and 15 speeds implies 150 trials, for Figure 2a we dropped 10 trials for
which the GPS data was either missing or the GPS derived average speed was more than 0.2 m/s from the
prescribed average speed. The double peaked speed profile for individual subjects, when they did have it,
were much sharper and distinct than is evident in the pooled histogram of Figure 2a of the main article. That
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this broadening of peaks is inevitable is apparent from considering the speed plateaus in Figure 2b of the
main article; in particular, note that the walking speed plateaus of the subjects 4-6 are slightly di↵erent. A
further broadening of the peaks is on account of the noise-like fluctuations in the speed data, seen in Figure
2b. These fluctuations, which ‘seem’ noise-like over time-scale of 60 seconds, are partly due to natural speed
fluctuations that the hip undergoes within a walking or running step: in walking, forward speed is minimum
around mid-single-support and maximal around the step-to-step transition; in running, forward speed is also
minimal during mid-single-support and is higher during flight phase.

Stride frequency measurements. Stride frequency measurements in Figure 2c of the main article were
from ‘Garmin footpod’ and video-based counting. The footpod is an accelerometer-based step counter,
weighs little more than a door key, and was attached to one of the shoes of the subject. Using calibration
trials, we inferred that the readings reported by the footpod were accurate only as moving time-averaged
results of the number of steps over about 15 seconds. While stride frequency errors in steady state could
be very small, during transients, the error could be as high as 0.2 Hz. This means that the peaks in stride
frequency were likely broader than could be inferred from a more accurate step counter, making the possible
double peaks in the stride frequency histograms not very distinct. To mitigate some smoothening e↵ects of
the moving average, we used video recordings of the studies to correct the steps counts over the initial and
final 20 seconds of each trial. Future studies would use more accurate accelerometers or foot switches for
better time-resolution.

S5 Why more behavioral variability near the transition

We provide a brief mathematical comment on why variability might be related to the slope of the running
fraction curve.

Say a subject had an ideal running fraction �r(v) (whether it is energy-optimal or not) which the subject
would use as a function of average speed in the absence of any ‘errors.’ But, say the subject uses the running
fraction at an incorrect average speed v̄ = v +�v, when traveling at v, the prescribed speed. Or, the subject
travels at the incorrect speed v̄, arriving earlier or later, while using the running fraction for the prescribed
speed v. In both cases, we can derive an expression for the error in observed fraction �̄r as a function of
prescribed speed v as follows:

�̄r(v) = �r(v + �v) ⇡ �r(v) +
@�r

@v

· �v (Taylor series).

Therefore, for a given variance �

2

v for �v, assuming zero mean (h�vi = 0), the variance �

2

� in observed �r

will be:

�

2

� =
✓

@�r

@v

◆
2

· �

2

v ,

(using a standard result in basic probability theory) and therefore, the error standard deviation in observed
running fraction is:

�� =
����
@�r

@v

���� · �v.

Exactly, the same mathematics and result applies when we are pooling multiple subjects, each with slightly
di↵erent �r(v), identical except for a shift sideways with some variance �

2

v .
Therefore, the variability in such pooled data from such subjects will be maximum at the transition

regime, where the absolute slope |@�r/@v| is maximal.
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