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Although people’s legs are capable of a broad range of muscle-use
and gait patterns, they generally prefer just two. They walk,
swinging their body over a relatively straight leg with each step,
or run, bouncing up off a bent leg between aerial phases. Walking
feels easiest when going slowly, and running feels easiest when
going faster. More unusual gaits seem more tiring. Perhaps this is
because walking and running use the least energy1–7. Addressing
this classic1 conjecture with experiments2,3 requires comparing
walking and running with many other strange and unpractised
gaits. As an alternative, a basic understanding of gait choice might
be obtained by calculating energy cost by using mechanics-based
models. Here we use a minimal model that can describe walking
and running as well as an infinite variety of other gaits. We use
computer optimization to find which gaits are indeed energetically
optimal for this model. At low speeds the optimization discovers
the classic inverted-pendulum walk8–13, at high speeds it discovers
a bouncing run12,13, even without springs, and at intermediate

speeds it finds a new pendular-running gait that includes walking
and running as extreme cases.
One way of characterizing gaits is by the motions of the body

(Fig. 1a). In these terms, walking seems well caricatured13 (Fig. 1b) by
the hip joint going from one circular arc to the next with push-off
and heel-strike impulses in between. Similarly, running could be
caricatured by a sequence of parabolic free-flight arcs (Fig. 1c), with
impulses from the ground at each bounce14–17.
Why do people not walk or even run with a smooth level gait8, like

a waiter holding two cups brim-full of boiling coffee? Why do people
select walking and running from the other possibilities? We address
such questions by modelling a person as a machine describable with
the equations of newtonian mechanics. The basic approximations
are: first, that humans have compact bodies and light legs; second,
that gait choice is based on energy optimization1,4; and third, that
energy cost is proportional to muscle work2,4,8. We use a simplifica-
tion of previous models4,6,7, perhaps the simplest mechanical model
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Figure 1 | Body motion in human gaits. a, Trajectories of the centre of mass
for a few possible gaits. Solid lines, stance; dotted lines, flight. b, Trajectory
for inverted-pendulum walking. c, Trajectory for impulsive running.

d, Trajectory for a new gait: pendular running. At least one of the gaits b, c
and d turns out to use less work than any other candidates (for example,
from a), according to the calculations here.
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that is capable of exhibiting a broad range of gaits that includes
walking and running. Although the model is a mechanical abstrac-
tion that is not physically realizable, it is subject to the laws of physics.
Because of its simplicity, the model is amenable to interpretation.
It can also be studied with exhaustive and accurate simulation
experiments, far beyond what is possible with human subjects.
We wish to find how a person can get from one place to another

with the least muscle workW (Methods).We treat the body as a point
massm at position (x, y) at time t (Fig. 2a). The legs are massless and
therefore, when not in ground contact, they can be oriented,
lengthened and shortened with no energy cost. The fluctuations of
the leg length l(t) due to flexion of the hip, knee and ankle are
incorporated in a single telescoping axial actuator4 that carries a
compressive time-varying force F ¼ F(t). For simplicity, we seek an
explanation of gait choice with no essential dependence on elastic
energy storage; we assume no springs (tendons) in series or parallel
with the actuators.
We assume that during the stance phase, when a foot is in contact

with the rigid level ground, that it does not slip. At most one foot can
be in contact with the ground at a time. During stance, both gravity
mg and F act on the body (Fig. 2a). During the flight phase, when
neither leg touches the ground, gravity is the only force. We seek
periodic motions, in which each step is like the previous step. The left
and right legs have identical force and length profiles. A single step
consists of one stance phase (possibly short, as in high-speed
running) and one flight phase (possibly of zero duration, as in
walking).
A gait is characterized by the position and velocity of the body at

the start of a stance phase relative to the stance foot, by the step
period, and by F(t). Given these, we can integrate the newtonian
equations of motion forwards in time to find the body trajectory and
leg length as functions of time (including the maximum leg length
lmax). At the end of the step, we assume that the next foot is placed on

the ground at the same position relative to the body as at the start.We
can thus calculate the step length d, the average forward speed v, and
the work done by the leg per unit weight and distance C ¼ W/(mgd).
For random F(t), the final body height and velocity generally do not
match the starting conditions and therefore do not generate a
periodic gait. Nonetheless, by appropriately varying F(t) we can
find infinitely many periodic gaits (Fig. 1a) with all manner of
complicated trajectories (Methods). Of those periodic gaits, we
wish to find those that minimize the cost C.
The optimal solutions have cost arbitrarily close to zero unless the

optimization is further constrained. The cost can be made arbitrarily
small by growing the leg length (and the locomotion becomes akin to
the rolling of a giant multi-spoked wheel), so we set the maximum
length to be lmax, representing the leg length. Because we have no leg-
swing cost, C can be reduced to zero by taking very small steps6,12,18,
so we optimize for various fixed values of step length d. Finally, C has
a non-anthropomorphic lower bound (corresponding to standing on
one leg for an infinite time mid-step), approached as the average
speed v goes to zero, so we constrain v.
After non-dimensionalizing using m, g and lmax, no free param-

eters remain. We seek solutions as two conditions are varied: the
dimensionless average speed V ¼ v=

ffiffiffiffiffiffiffiffiffiffiffiffi
gl=max

p
(V2 is the so-called

Froude number) and the dimensionless step length D ¼ d/lmax. For
given values of Vand D, the optimal periodic gait is determined with
numerical optimal control methods that are more or less standard
(Methods).
All optimizations converged towards one of three stereotypical

collisional gaits, depending on V and D, but never to a smooth
collisionless gait. First, at low V, the classic inverted-pendulum
walking gait (Figs 1b and 2b) is optimal. Second, at high V, an
impulsive running gait is optimal (Figs 1c and 2c). Third, at
intermediate V, a new gait, pendular running (Figs 1d and 2d), is
optimal. Pendular running has a flight phase between extended
inverted-pendulum stance phases. Pendular running is a generaliza-
tion of, and a connection between, walking and running: with no
flight phase it is inverted-pendulum walking; with an infinitesimal
pendular phase it is impulsive running.
The numerical optimization, unbiased by an expectation of what

the optimal gaits might be, has thus discovered the classic gaits that
caricature walking and running. The new third gait might be the
model’s way of running with a non-zero stance phase, given the

Figure 2 | Point-mass biped model and its optimal solutions. a, The
configuration shown is part way through the stance phase. The next stance
leg is oriented to prepare for a new contact at a distance d from the last.
b–d, Dimensionless force and length shown as functions of dimensionless
time, for the three optimal gaits (b, pendular walk; c, impulsive run;
d, pendular run), before full convergence of the numerical optimization. The
finite forces in the figures are approximations to the converged impulsive
(collisional) forces. In the extrapolated optimum, as the grid size h ! 0 and
the allowed force upper bound Fmax !1, the optimizations find that
e1;e2 ! 0 and that the maximum forces used go to infinity (Methods). In
these limits the walking gait (b) is an inverted pendulumwith heel-strike and
push-off impulses, the running gait (c) is an impulsive bounce between free
flights, and the pendular run (d) has constant-length pendulum phases and
flight phases separated by impulses.

Figure 3 | The regions in which each of the three collisional gaits are
optimal. Inverted-pendulum walking ceases to be locally optimal at the
pendular-run interface. The oval indicates the approximate speed and step
length range at which humans switch from walking to running19,20. The
dashed line indicates where compression-only inverted-pendulum walking
becomesmechanically infeasible (typically approximated8 asV ¼ 1, which is
correct for small D). At the right part of the intermediate region, the
pendular run is almost impulsive running; at the left edge, it is almost
inverted-pendulum walking.
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model’s lack of tendons. A tentative predictionwould be the existence
of a ground force versus time curve with two humps during the
stance phase for, perhaps, weak or obese people running slowly. The
respective regions of optimality of the three gaits are shown in Fig. 3.
Alexander8,10 argued that inverted-pendulum walking is limited to

those speeds at which the centripetal acceleration of a body pivoting
over a straight leg is less than gravity, ensuring that the body does not
vault off the ground. However, walking becomes energetically non-
optimal at speeds lower than the above limit8,10 (Fig. 3). Indeed,
people switch from awalk to run19,20 at aboutV ¼ 0.65 andD ¼ 0.95,
close to the boundary at which walking ceases to be optimal (Fig. 3)
in this model.
The numerical optimization results are buttressed by heuristic

considerations. The cost C is an integral of the leg power (Methods).
There are two ways of setting this power to zero: setting l̇ ¼ 0
(corresponding to inverted-pendulum motion) or setting F ¼ 0
(corresponding to free flight). Thus, the flight phase (F ¼ 0) of
running is an energy-saving analogue of the pendular (l̇ ¼ 0) motion
of walking; both phases involve nowork. All the work is crowded into
brief impulses at appropriate times.
Inverted-pendulum walking, pendular running and impulsive

running all have work-free motions, punctuated by impulses (colli-
sions). The costs of these collisional gaits can be calculated
directly10–12. For inverted-pendulum walking, positive work
performed during push-off is evaluated as the difference in
kinetic energy just before and after the push-off 8,11,12.
Cwalking ¼DV2

I =ð82 2D2Þ, where V1 is the magnitude of the velocity
vector just before push-off. For impulsive running, cost is equal to
the vertical kinetic energy that is lost and regained in every
bounce12,13 ðCrunning ¼D=8V2Þ. For a given V and small values of
D, the cost for the collisional gaits is proportional12 to the square of
the kink-angle in the trajectory (Fig. 4c). The energetic trade-off
between inverted-pendulum walking and impulsive running
(Fig. 4a, b) can be understood as a minimization of collision angles12

for a specific step length D. At low speeds the circular arc of walking
has shallower collisions than the parabolic free-flight of running, and
at high speeds the situation is reversed (Fig. 4c).
The optimizations here show that smooth collisionless gaits

require more work than the optimal collisional gaits. For example,
consider a flat walk8,10, in which the body moves at constant height.
This gait has8,10 Cflat ¼D=8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12D2

p
. Figure 4a, b shows that the

exceptionally smooth, flat walk is never optimal (Methods). Recent
human experiments21,22 also show that a flat walk uses more energy
than normal walking.
As has been found for a gait model that assumes collisions a

priori12, the more general model here shows that it is advantageous to
simulate elasticity during running, even with no genuine elasticity
(tendons). Indeed, real human legs do approximately simulate an
elastic spring during running16,17. More generally, the model here, as
well as simpler models4,8,12, indicates that the energetic utility of
running probably does not depend on genuine elasticity in the legs.
However, such elasticity, neglected here, would further decrease the
cost of running4,6,9, supporting the idea23 that human ancestors could
have started to run before the modern human long Achilles tendon
was fully evolved.
To maximize simplicity of calculation and interpretation, we have

neglected various crucial features including a cost for leg-swing12,18,24,
a more realistic model of muscle cost7,25, allowance of a non-
infinitesimal double-stance phase4,6,7, elastic and dissipative elements
in series with the actuator4,6,7,23, the possibility of higher-period gaits
(for example skipping26), an extended foot instead of a point foot27,
and other anatomical realism27.
The simplest way of including a leg-swing cost would be to assume

that it is a function of frequency and amplitude which is independant
of gait. The leg-swing cost is then a function of VandD, has no effect
onwhich gait uses less energy at a givenVandD, and therefore has no
effect on which gait is optimal at that V and D. Figure 3 would
be exactly unchanged. The simplest way of incorporating elastic
recovery is to assume that a fixed fraction of the leg work is from
elastic energy storage and hence should have no cost in the optimi-
zation. This would scale the costs of all gaits by the same constant
(less than 1) and would therefore have no effect on any of the relative
costs of various gaits. Thus, leg-swing and elastic-recovery effects can
affect gait choice only through more complex dependences.
We do not know which neglected effects are the most important

for explaining the deviations of observed human behaviour from the
model predictions here, particularly the prediction of the pendular-
running gait, which seems little used by humans. Nonetheless, this
model, having no free parameters, might most simply explainwhy we
choose walking and running over the plethora of other possible gaits.

METHODS
Formulation. The governing equations are

m€x¼ Fðx2 xcÞ=l;m€y¼2mgþ Fy=l ð1Þ

for stance with duration t s, and

€x¼ 0; €y¼2g ð2Þ

for flight with duration t f, where l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 xcÞ

2 þ y2
p

. Time t ¼ 0 is the

Figure 4 | Cost of transport versus speed. a, For small D ( ¼ 0.50), all
periodic gaits (that do not involve leg tension) have nearly equal costs near
V ¼ 1. Inverted-pendulum walking is optimal at low speeds, pendular
running at a narrow range of intermediate speeds, impulsive running at high
speeds, and flat walking is never optimal. b, However, for large D ( ¼ 1.00)
and for V < 0.8–0.9, flat walking, perhaps like a ‘Groucho walk’30, although
not optimal, has lower cost than both inverted-pendulum walking and
impulsive running. The colours used in a and b indicate the following gaits:
red, impulsive running; blue, pendular walking, green, level walking; purple,
optimal gait. c, Body trajectories for a pendular walking gait (blue; kink
angle is independent of speed), a low-speed impulsive running gait (red; kink
angle is large), a high-speed impulsive running gait (orange; kink angle is
small) and level walking (green; no kinks, but generally more costly), all with
the same step length.
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beginning of a stance phase with foot-contact point xc ¼ 0. The initial con-
ditions are xð0Þ ¼ x0; yð0Þ ¼ y0; _xð0Þ ¼ _x0 and _yð0Þ ¼ _y0: At t ¼ tf þ ts,
periodicity requires that xf ¼ x0 þ d; yf ¼ y0, _xf ¼ _x0 and _yf ¼ _y0. The numerical
integration then determines v, d, lmax and C. For given lmax, d and v, we seek the
control strategy (x0; _x0;y0; _y0;FðtÞ; ts) that minimizes the work-based specific
mechanical cost of transport

C ¼

ð tstep

0

½FðtÞ_l�þdt=mgd ð3Þ

where []þ is non-zero only for positive values ð½p�þ ¼ p if p$ 0 and ½p�þ ¼

0 if p, 0Þ: The only cost is for mechanical work (dW ¼ Fdl).
Numerical solution of the optimal control problem. We non-dimensionalize
all quantities by lmax, M and g. We seek ðX0; _X0;Y0; _Y0;FðtÞ;tsÞ ¼
ðx0=lmax; _x0=

ffiffiffiffiffiffiffiffiffiffi
glmax

p
; y0=lmax; _y0=

ffiffiffiffiffiffiffiffiffiffiffi
glmax;

p
FðtÞ=mg; ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=lmaxÞ

p
; where t is the

non-dimensional time, that produce the optimal periodic gait with given V
and D, and with the non-dimensional step-length satisfying 0# LðtÞ# 1.

The infinite-dimensional search space for this optimization problem contains
the set of all possible functions FðtÞ. We restrict our search to the set of
piecewise linear functions, defined on an evenly spaced time-grid
ð0¼ t0;t1;t2;…;tN ¼ tsÞ, with grid spacing ti 2 ti2l ¼ h¼ ts=N: So the search
space becomes z ¼ ðX0; _X0;Y0; _Y0;Fi¼0;…N ;tsÞ; where FiðtÞ ¼ FðtiÞ. The linear
constraints are 1# ts # tstep;Fmin # Fi # Fmax: We need 1 . 0 because a
periodic step requires a stance phase. In addition, although the forces are
allowed to be unbounded conceptually, for numerical optimization they need
to be bounded: we choose a bound Fmax .. 1 and Fmin ¼ 0: Ultimately Fmax is
allowed to grow arbitrarily, so that it is not a parameter in the solutions we
present. Interestingly, choosing Fmin , 0;, allowing tensional leg-forces, does not
affect the optima. The leg-length constraint, 0# LðtÞ# 1, is enforced at the grid
points t¼ ti . Gait periodicity is another nonlinear constraint.

For given z,C and the constraint violations are evaluated by integration of the
differential equations. C(z) is to be minimized subject to the various linear and
nonlinear equality and inequality constraints: g eq(z) ¼ 0 and g ineq(z) # 0. We
smooth C(z) with h as a smoothing parameter. We used a particularly robust
implementation of Sequential Quadratic Programming (SQP)28 for the
optimization.

Convergence to the idealized collisional gaits is discovered by letting N!

large; Fmax ! large and 1! small. At high V, if Fmax is set large enough for a
given 1;Fmax has no effect on C. The optimization then always finds
ts ¼ 1 as 1! 0, thus converging to impulsive running. We assure ourselves of
the convergence to the collisional walking by Richardson extrapolation. That is,
we solve the problem for grids of sizesN ¼ N1,N2,N3,…, assuming that the cost
is a smooth function of N21, and extrapolating the cost to N21 ! 0. Fmax is
maintained high enough and 1 low enough to be unused constraints. The ODE
solutions are accurate to about 10214 over a grid interval (obtained by integrat-
ing from grid-point to grid-point with an adaptive RK-45 method, bench-
marked by a Taylor-series method) and accurate to less than 10214N over the
whole step.We thus avoid significant sources of error not related to the finiteness
of N and can therefore treat the convergence as dependent only on N. The
convergence is observed to be linear in N21. The linearly extrapolated limit of
the sequence of C values is found to differ from the cost of the corresponding
analytically determined inverted-pendulum collisional walking gait by a relative
error of about 1023.

For each V and D, multiple optimization runs, each started with a different
initial seed, all converged towards the same control strategy, indicating the
likely uniqueness and globality of each collisional minimum. To determine the
regions in which each gait is optimal more precisely (Fig. 3) we repeated the
optimization over the space of (analytically calculable) collisional gaits.
Pontryagin’s maximum principle. Pontryagin’s maximum principle29 can be
used over the stance phase, neglecting the leg-length constraint, to get necessary
conditions on the optimal solutions. This calculation shows that during stance, if
the optimal control is not singular, the leg-forces must be maximum (Fmax,
apparently corresponding to heel-strike or push-off), or zero (stance simulating
flight by having no force). This much agrees with our full optimizations and
heuristics. The pendular stance portions we found, with l̇¼ 0, seem to be
singular arcs of the optimal control.
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