LIMIT CYCLES

INTRODUCTION

We start with a demonstration of an "aeroelastic" instability and oscillation.

With the fan switched off \((V=0)\), the cantilever beam is essentially a damped oscillator, so the phase portrait looks like:

\[
\begin{array}{c}
\dot{y} \\
y
\end{array}
\]

\((0,0) = \text{Fixed point} \quad \text{STABLE SPIRAL} \quad \text{(under-damped oscillations)}\)

When the fan is turned on \((V \text{ large})\), the cantilever beam starting from \((0,0)\) reaches a steady (apparently periodic) oscillation. That is, \((0,0)\) has become an \underline{unstable spiral}, and there exists a periodic motion with finite amplitude (shown in red below).

The phase portrait now looks like:

\[
\begin{array}{c}
\dot{y} \\
y
\end{array}
\]

Large initial conditions decay.

Small initial amplitudes grow.

With an \underline{asymptotically stable periodic orbit} in between.
The periodic orbit here is called a limit cycle. Formally, a limit cycle is defined as an "isolated" periodic orbit. Limit cycles can be stable or unstable just like FPs. What does "isolated" mean? "Isolated" means that arbitrarily close to our limit cycle, there exists no other periodic orbit.

For instance, the periodic orbits of a simple harmonic oscillator are NOT isolated.

\[my'' + ky = 0 \]

\(< (0,0) \) is a CENTER. There is an continuum of periodic orbits. That is, arbitrarily close to any given periodic orbit, there is another periodic orbit. (There is a periodic motion at every amplitude).

Linear systems cannot have limit cycles. Only nonlinear systems can.

Toy example for limit cycles (Strogatz):

Dynamics in polar coordinates

\[\dot{r} = r(1-r^2) \]

\[\theta = 1 \]

\[(x,y) \]

\[x = r \cos \theta \]

\[y = r \sin \theta \]
r and θ are decoupled, so can be studied independently.

FPs for r-dynamics: $r^* = 0$
and $r^* = 1$.

$r^* = 1$ is a stable fixed point.

So if $r(0) < 1$, then r increases $\to 1$.

If $r(0) > 1$, then r decreases to 1.

If $r(0) = 1$, $r(t) \equiv 1$ for all t.

θ dynamics: $\dot{\theta} = 1 \implies \theta(t) = t$. $\theta(t)$ increases monotonically with t.

Phase portrait: (useful to think about $r < 1$, $r = 1$, $r > 1$).

Limit cycle: at $r = 1$ and $\dot{\theta} = 1$.

Circle of radius 1 in the x-y plane.

$(0,0)$ is an unstable spiral.

Because if $r < 1$, r increases to 1.

Why are the above trajectories anti-clockwise?

Because $\dot{\theta} = 1$ as given and θ is measured anti-clockwise by convention in polar coordinates.
Van der Pol equation

This is a famous example for limit cycles,

due to Dutch electrical engineer Balthasar van der Pol (1930s)
initially as a model for some electrical circuits involving
vacuum tubes.

Since then the equation has been used in
a variety of settings notably in neuroscience.

Equation: \[\dot{x} + \mu (x^2 - 1) \dot{x} + x = 0 \]
\[\mu > 0 \]
nonlinear damping term.

\(\mu (x^2 - 1) \) is like a (nonlinear) damping coefficient.

When \(|x| < 1 \), \(\mu (x^2 - 1) \) - negative damping coefficient
So we might expect instability
and growth for \(|x| < 1 \), i.e.,
small amplitudes.

When \(|x| > 1 \), \(\mu (x^2 - 1) \) - positive damping coefficient
So we might expect large amplitudes
+ velocities to decay.

These observations suggest (but do not prove) that there might be a stable limit cycle at an intermediate amplitude.

And indeed there is.

Note: For \(\mu = 0 \), the equation becomes \(\ddot{x} + x = 0 \) undamped mass-spring system which has a continuum of periodic orbits.

For \(\mu > 0 \), but arbitrarily close to zero, there is a stable limit cycle!

This is also an example of a singular perturbation (in which \(\mu = 0 \) is qualitatively different from \(\mu \neq 0 \)).
Limit Cycles - Aeroelastic Oscillation Example

+ Hopf Bifurcations, etc.

Live Demo Setup
(top view) Fan Cont. Lever

→ Simplified Version

\[
\begin{align*}
V \rightarrow Y & \\
\text{Wind velocity relative to the body} & \\
V_{\text{rel}} = V_{\text{ex}} - y_{eg} \\
x, \text{ angle of attack} & \\
V_{\text{rel}} \\
\end{align*}
\]

Let \(F_y \) be the force of the wind on the body along \(e_y \).

\(F_y \) depends not only on the wind speed \(V \) but also the body velocity \(y \).

In particular, the force \(F_y \) is given by the formula:

\[
F_y = \frac{1}{2} C_{f_y} \rho V^2 a
\]

where \(\rho \) is the density of air,

\(V \) is the wind speed,

\(a \) is cross-sectional area \(\perp \) to wind direction,

\(C_{f_y} \) "drag coefficient" for \(F_y \) (a mixture of the normal drag & lift coefficients),

which is a function of \(x \), or equivalently, \((y/V) \).

References

Article: The Square Prism as an Aerelastic Nonlinear Oscillator. GV Parkinson.

Book: Nonlinear Dynamics and Chaos.
JMT Thompson and HB Stewart, pages 58-61.
By symmetry, we must have
\[C_{fy}(\frac{\dot{y}}{V}) = -C_{fy}(\frac{-\dot{y}}{V}) \] - 3

or equivalently
\[F_y\left(\frac{-\dot{y}}{V}\right) = -F_y\left(\frac{\dot{y}}{V}\right) \]

That is, \(C_{fy} \) is an odd function of \(\frac{\dot{y}}{V} \).

So we may write
\[C_{fy} = A_1\left(\frac{\dot{y}}{V}\right) - A_2\left(\frac{\dot{y}}{V}\right)^3 + A_3\left(\frac{\dot{y}}{V}\right)^5 - A_4\left(\frac{\dot{y}}{V}\right)^7 \] - 4

If force is along \(y \) for positive \(\dot{y} \), the force is equal and opposite for negative \(\dot{y} \).

\[A_1 = 2.69 \]
\[A_2 = 168 \]
\[A_3 = 6270 \]
\[A_4 = 59900 \]

Parkinson & Smith (1964)

\[\text{determined empirically} \]

from wind tunnel experiments with steady wind. So Eq(4) + Eq(2)

is a "quasisteady"

approximation for \(F_y \).

Writing the equation for the spring-mass-damper system with the wind force, we have
\[m\ddot{y} + b\dot{y} + ky = \frac{1}{2} \rho V^2 a \left[A_1\left(\frac{\dot{y}}{V}\right) - A_2\left(\frac{\dot{y}}{V}\right)^3 + A_3\left(\frac{\dot{y}}{V}\right)^5 - A_4\left(\frac{\dot{y}}{V}\right)^7 \right] \]
Rearranging,

\[\text{linear damping term} \]

\[\text{wind force with nonlinear dependence on } \dot{y}, \quad \text{(no linear term)} \]

Let us think about the dynamics in the \(y - \dot{y} \) phase plane.

Clearly \((0,0)\) is a fixed point.

It can be shown that \((0,0)\) is a stable fixed point if

\[b - \frac{1}{2} \rho V A_1 > 0 \]

(positive linear damping)

and unstable fixed point if

\[b - \frac{1}{2} \rho V A_1 < 0 \]

(negative linear damping coefficient)

In particular, as \(b - \frac{1}{2} \rho V A_1 \) goes from \(> 0 \) to \(< 0 \), the fixed point \((0,0)\) goes from being a stable spiral to an unstable spiral.

It is a spiral as opposed to a node because the effective damping is \(b - \frac{1}{2} \rho V A_1 \) and we are considering a situation where this effective damping is close to zero.
It turns out that in addition to \((0,0)\) becoming unstable, a small limit cycle is born around \((0,0)\) when \[b - \frac{1}{2} p_{AV} \alpha > 0 \]

\[b - \frac{1}{2} p_{AV} \alpha < 0 \]

\[
\Rightarrow V < \frac{2b}{p_{AV}} \quad \text{or} \quad V > \frac{2b}{p_{AV}}.
\]

Critical wind speed \(V_{co} = \frac{2b}{p_{AV}}\)

Below this critical wind speed \((V < V_{co})\), \((0,0)\) is stable - no oscillations.

Above this critical wind speed \((V > V_{co})\), \((0,0)\) is unstable and a limit cycle oscillation is stable.

This is a "Hopf Bifurcation". In particular, it is called a supercritical Hopf bifurcation (in analogy with the supercritical pitchfork bifurcation) as the limit cycle grows continuously from zero when \(V\) is increased above \(V_{co}\).

When created, the limit cycle has zero radius and grows as \(V\) is increased above \(V_{co}\).

Hopf Bifurcation (Definition): The appearance or disappearance of a limit cycle by interaction with a fixed point that changes stability.
Supercritical Hopf

Parameter change:

<table>
<thead>
<tr>
<th>Stable fixed point (spiral)</th>
<th>Unstable fixed point (saddle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable fixed point + limit cycle</td>
<td></td>
</tr>
</tbody>
</table>

Subcritical Hopf

Parameter change:

<table>
<thead>
<tr>
<th>Unstable fixed point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable fixed point + limit cycle</td>
</tr>
</tbody>
</table>

Recognizing a Hopf Bifurcation

We can recognize a Hopf bifurcation by seeing what happens to the eigenvalues of the fixed point in question.

The fixed point generally goes from being an unstable spiral to a stable spiral or vice versa.

So, the eigenvalues go from being complex conjugates with positive real parts to complex conjugates with negative real parts.

Motion of eigenvalues in the complex plane as some system parameter is varied.

\[\text{Re}(\lambda) \]
\[\text{Im}(\lambda) \]

Complex conjugate pair

Positive real part

Negative real part

\[\lambda \]

\[\lambda \]

\[\lambda \]

\[\lambda \]

This is true in any dimension, not just 2. In N-dimensional, one complex conjugate pair of eigenvalues changes the sign of its real parts.

Note: The changing of the sign of the eigenvalue real parts is a necessary condition for a Hopf bifurcation. BUT is not sufficient to predict limit cycles.
Coming back to the aerelastic example, we can increase the velocity V higher and see what happens to the phase portrait.

As the wind speed V is increased, the system goes from having 1 limit cycle to 3 limit cycles!

(Note: This is just a qualitative picture. The shapes of the limit cycles are far from circular.)

- If you start from anywhere within L_1, you converge asymptotically to L_1.
- If you start from anywhere between L_1 and L_2, you converge asymptotically to L_1.
- If you start from anywhere between L_2 and L_3, you converge asymptotically to L_3.
- If you start from anywhere outside L_3, you converge asymptotically to L_3.
- Start outside L_3 and run time backward, you go to infinity.
- Start between L₁ and L₃, and run time backward; you asymptotically approach L₂. (In 2D systems, unstable limit cycles become stable limit cycles when you run time backward. But this is NOT the case in general for N-Dim systems. Exercise: why?)

- Start inside L₁ and run time backward; you asymptotically approach the unstable fixed point (0,0).

As the wind speed is increased even further, the limit cycles L₁ and L₂ come together and vanish, leaving only L₃.

Sequence of phase portraits as V is increased.
\[\text{(II) } \rightarrow \text{(III) } \]

happens in the following manner (say at critical speed \(V_{c1} \)).

\[V < V_{c1} \]

(just below)

\[V > V_{c1} \]

(just above)

the stable and unstable limit cycles appear simultaneously

and they are arbitrarily close to each other (they become coincident at the critical velocity \(V_{c1} \)).

This bifurcation is an analog of the saddle-node bifurcation for fixed points - it is a **saddle-node bifurcation** of limit cycles - in which a stable and unstable limit cycle appear almost on top of each other.

\[\text{III } \rightarrow \text{ IV} \]

is also a saddle-node bifurcation, except now \(L_1 \) and \(L_2 \) come together and vanish, say at some critical velocity \(V_{c2} \).

\[V < V_{c2} \]

(just below)

\[V < V_{c2} \]

(just above)
We can represent the sequence of qualitative changes that happen to the phase portrait by plotting the "amplitudes" of the limit cycle oscillations.

The limit cycles are often shaped so that by amplitude we mean "some" reasonable measure of size, say maximum.

The above plot captures aspects of the phase portrait for various fixed values of \(V \).

We can ask what the system behavior is when \(V \) is slowly increased as a function of time.

(Note "slowly" is a key word. If \(V \) is increased very fast, there might be all kinds of transient effects associated with \(V(t) \).)
Increasing $V(t)$

The system is started at rest, $(0,0)$.

As V is increased until V_{c_2}, the $(0,0)$ is stable.

After V_{c_2}, $(0,0)$ is unstable, so the system starts oscillating — this is the stable limit cycle.

As V is increased, the amplitude of the limit cycle increases.

After V_{c_1}, two limit cycles are stable — L_1 and L_3. But the system is currently in L_1 and there is no reason to go to L_2 (unless there happens to be a huge perturbation).

So the system remains in L_1.

After V_{c_2}, L_1 vanishes, and the system goes to the only stable structure available, which is the large limit cycle, manifested as a jump in oscillation amplitude.

Decreasing $V(t)$ from high V.

We start at high V and reduce V.

The system starts at L_3, the large limit cycle.

As V is reduced less than V_{c_2}, the system has 2 stable limit cycles L_1 and L_3, but the system already in L_3 has no reason to move to L_1 — it continues to be in L_3 as V is decreased further.

When V is reduced to less than V_{c_1}, the limit cycle L_3 suddenly vanishes and the system gets attracted to the only stable structure available, which is the limit cycle L_1. This is seen as a jump in oscillation amplitude down here.
The jump up in amplitude as \(V \) increases happens at \(V_{c2} \).

The jump down in amplitude as \(V \) decreases happens at \(V_{c1} \).

The difference in oscillation behavior when \(V \) is increased versus when \(V \) is decreased is called "hysteresis" in oscillation amplitude.

(The word "hysteresis" is used when an experiment exhibits different behavior as a parameter \(V \) increases versus when the parameter is decreased slowly.)

(Note: The word "hysteresis" is also used in the context of inelastic (dissipative) material behavior. But again, the word is used there because these materials exhibit different behavior (say \(\sigma - \varepsilon \) curves) when some parameter (say \(\varepsilon \)) is increased vs decreased.)

Summary

Amplitude vs oscillation

The sudden jump in amplitude at \(V_{c2} \) can, in real systems, be unexpected and therefore sometimes catastrophic!

Suggestions: Use plane to draw phase portraits at different velocity regimes. See what happens when the system is started at different initial conditions.

Exercise: Slowly vary \(V \) from zero in a simulation, increase + decrease and see what the oscillation amplitude is, initial condition \((0,0)\) + small perturbation.